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Abstract

Uniform Meaning Representation (UMR) is
a semantic annotation framework designed to
be applicable across typologically diverse lan-
guages. However, UMR annotation is a labor-
intensive task, requiring significant effort and
time especially when no prior annotations are
available. In this paper, we present a method
for bootstrapping UMR graphs by leveraging
Universal Dependencies (UD), one of the most
comprehensive multilingual resources, encom-
passing languages across a wide range of lan-
guage families. Given UMR’s strong typo-
logical and cross-linguistic orientation, UD
serves as a particularly suitable starting point
for the conversion. We describe and evaluate
an approach that automatically derives partial
UMR graphs from UD trees, providing anno-
tators with an initial representation to build
upon. While UD is not a semantic resource, our
method extracts useful structural information
that aligns with the UMR formalism, thereby
facilitating the annotation process. By leverag-
ing UD’s broad typological coverage, this ap-
proach offers a scalable way to support UMR
annotation across different languages.

1 Introduction

Uniform Meaning Representation (UMR) (Van Gy-
sel et al., 2021) is a graph-based meaning represen-
tation framework primarily grounded in Abstract
Meaning Representation (AMR) (Banarescu et al.,
2013). Unlike AMR, which is mainly designed
for English, UMR was specifically developed with
a cross-linguistic scope, focusing particularly on
morphologically complex and low-resource lan-
guages. UMR provides a sentence-level repre-
sentation that captures core elements of meaning
such as predicate-argument structure and word
senses. Compared to AMR, it also introduces fea-
tures to better handle tense, aspect, modality, and
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quantification in a way that generalizes across lan-
guages. Beyond the sentence level, UMR supports
document-level annotation, which defines strate-
gies to represent coreference among entities and
events, temporal relations, and modal relations. All
these features make UMR a rich, flexible frame-
work for modeling meaning in cross-lingual con-
texts. UMR graphs are directed graphs, mostly
acyclic, with each concept represented as a node
and edges encoding semantic relations. Through
the use of re-entrancies, a single node can partici-
pate in multiple relations, supporting the expression
of shared arguments and anaphoric reference.

As is often the case with deep semantic anno-
tations, annotating data according to the UMR
formalism has proven to be extremely time-
consuming, highlighting the need for alternative
solutions and partial automation of the annotation
process. This issue is particularly relevant for lan-
guages which lack the same resources and anno-
tators as widely spoken languages like English.
In this paper, we present a method for converting
Universal Dependencies (UD) (de Marneffe et al.,
2021) trees into (partial) UMRs. UD is one of the
most comprehensive multilingual resources, cover-
ing a wide range of typologically diverse languages
– 179 in total as of version 2.16. In light of the ty-
pologically motivated nature of UMR, UD’s broad
typological coverage is particularly valuable for
this task. At the same time, while UMR abstracts
away from the morpho-syntactic representation of
language properties, UD is primarily concerned
with representing morpho-syntax. Since UD is not
a semantic resource, a full UMR graph cannot be
expected from this conversion. However, generat-
ing reasonably accurate partial graphs is already
highly beneficial, as it provides annotators with
a structured starting point, reducing the effort re-
quired for manual annotation.

Our contributions include: a) a language-
independent UD-to-UMR converter; b) a manually



annotated test set comprising 100 parallel sentences
in three languages (Czech, English, and Italian), for
a total of 300 sentences;1 c) two-fold evaluation of
the conversion, aimed at providing insights into the
interaction between syntax and semantics.

The remainder of the paper is structured as fol-
lows. We first provide background on conversion
strategies to UMR (Section 2), followed by the pre-
sentation (Section 3) and evaluation (Section 4) of
the UD-to-UMR converter. Finally, we conclude
with a discussion of future directions (Section 5).

2 Related Work

Like other forms of semantic representation, UMR
annotation is a time-consuming and labor-intensive
task, highlighting the need for automatization meth-
ods that could streamline the process. Converting
AMR corpora to UMR (Bonn et al., 2023) is un-
doubtedly a promising and valid approach. How-
ever, due to UMR’s inherent emphasis on multilin-
guality, restricting UMRs to languages with exist-
ing AMRs is not sufficient. Instead, it is crucial
to develop strategies that leverage other available
corpora to generate UMRs.

Buchholz et al. (2024) address this challenge by
proposing a method to bootstrap UMRs from inter-
linear glossed text (IGT), providing annotators with
a preliminary structure rather than requiring them
to annotate from scratch – an objective that aligns
with our UD-to-UMR conversion efforts. While
their approach is applied exclusively to Arapaho, its
potential for broader applicability is demonstrated
with Quechua data. Their method generates sub-
graphs centered around individual verbs, leaving it
to the annotator to integrate them into a cohesive
structure for complex constructions, such as subor-
dinate clauses. In contrast, our approach builds a
single, comprehensive graph that directly incorpo-
rates subordination.

Another line of research involves converting
the Prague Dependency Treebank (PDT) to UMR
(Lopatková et al., 2024). The tectogrammatical
layer in PDT (Hajič et al., 2020) captures deep
syntactic-semantic properties of language; while
maintaining the dependency structure used at the
surface-syntactic level, it encodes semantic fea-
tures such as argument (valency) structure, predi-
cate senses, and semantic attributes of nodes. PDT
trees share structural similarities with UD trees, but

1The converter and the annotated test set are openly avail-
able at https://github.com/fjambe/UD2UMR.

the presence of rich semantic annotations facili-
tates a more comprehensive conversion to UMR,
including elements such as coreference. PDT is a
Czech resource, so its conversion process remains
language-specific. However, a similar PDT-style
annotation exists for Latin,2 and efforts are under-
way to convert it as well.

A prior attempt to generate meaning representa-
tions from dependency syntax was made by Han
and Pavlova (2019), who focused on developing
a system to convert UD trees into AMRs. This
approach utilizes a rewriting system supported by
a lexical resource containing predicates from the
PropBank dataset. While this work serves as an
important precedent, it differs from our approach in
at least three key aspects: it converts to AMR rather
than UMR, it is language-specific (English only),
and it is highly lexicalized, relying on PropBank to
disambiguate concepts.

In addition to efforts to generate complete or
partial UMRs, there have also been attempts to
automatically extract specific elements of the graph,
such as verbal aspect (Chen et al., 2021) and word
senses (Gamba, 2024).

3 UD-to-UMR Approach

In our work, we focus exclusively on generating the
sentence-level UMR graph and alignments for each
sentence, whereas a full UMR annotation typically
includes a document-level block. Our approach in-
volves iterating over all nodes in each UD tree and
processing them sequentially. For each node, we
determine its position in the sentence graph being
generated and produce alignments by extracting to-
ken indices. To handle UMR graphs and UD trees,
we use the Penman (Goodman, 2020) and Udapi
(Popel et al., 2017) Python libraries, respectively.

Concept nodes are defined as lemmas. Since we
do not rely on language-specific frame files, we ex-
tract UD lemmas to label concepts. This approach
occasionally leads to a literal interpretation of the
sentence, which may not always align perfectly
with the intended UMR representation. However,
in most cases, it provides a sufficient approxima-
tion for our purposes.

Participant roles are defined through a set of lin-
guistically informed rules that map UD annotations
to UMR structures. These mappings go beyond

2The texts annotated in the PDT style are the Index
Thomisticus Treebank (ITTB) (Passarotti, 2019) and a por-
tion of the Latin Dependency Treebank (LDT) (Bamman and
Crane, 2006).

https://github.com/fjambe/UD2UMR
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Figure 1: UD tree for the sentence It contains a monument to Martin Luther King, Jr. (English PUD, w02005029).

a simple one-to-one correspondence between UD
syntactic relations and UMR semantic roles; they
combine syntactic labels with morphological fea-
tures (e.g., Case, Polarity) to infer appropriate
semantic roles. For instance, nsubj, csubj, and
obl:agent are mapped to the semantic role actor,
while obj, nsubj:pass, and csubj:pass are in-
terpreted as undergoer. Morphological cues play
a key role in disambiguation: for example, a de-
pendent labeled obl with Case=Dat is treated as
a recipient. In some cases, the mapping intro-
duces abstract predicates rather than roles. For in-
stance, appositions (appos) are not merely mapped
to a role label; instead, they are converted to the
abstract predicate identity-91, following UMR
conventions. Similarly, copular constructions (cop)
are also converted to a set of of abstract predicate
structures. Since UD relations are not as seman-
tically fine-grained as UMR roles require, exact
alignment is not always possible. Our goal is to
approximate semantic roles in a principled way
using available syntactic and morphological cues,
rather than striving for exhaustive and exact cover-
age. The participant roles in our generated UMRs
correspond to non-lexicalized semantic roles3 typ-
ically used in what UMR guidelines call ‘Stage 0
annotation’, where no PropBank-style frame files
are available. Incorporating frame files would in-
troduce language-specific dependencies, and our
goal is to develop a broadly applicable approach.

Hereafter, we use the English sentence “It con-
tains a monument to Martin Luther King, Jr.” as
an example and present the corresponding human-
annotated graph, the converted UMR graph, and its
UD tree (Figure 1).

3For example, actor, theme, recipient, rather than frame-
specific arguments like ARG0 or ARG1.

Gold UMR graph:
(s1c / contain

:actor (s1t / thing
:refer-number singular)

:undergoer (s1m / monument
:mod (s1p / person

:name (s1n / name
:op1 "Martin"
:op2 "Luther"
:op3 "King"
:op4 "Jr."))

:refer-number singular)
:modal-strength full-affirmative
:aspect state)

Generated UMR graph:
(s1c / contain

:actor (s1t2 / thing
:refer-number singular)

:undergoer (s1m / monument
:mod (s1t / type-NE

:name (s1n / name
:op1 "Martin"
:op2 "Luther"
:op3 "King"
:op4 "Jr."))

:refer-number singular)
:modal-strength full-affirmative
:aspect ASP)

In this example, the graphs diverge in the aspect
attribute and type-NE element present in the con-
verted graph. The aspect attribute is generated dur-
ing conversion whenever a predicate is identified,
even if no specific value can be assigned. In such
cases, it is represented by the placeholder string
ASP, ready for annotators to fill in. This approach
is necessary because UD morphological features
do not consistently provide aspect information, and
can prove helpful as the objective is not to automat-
ically produce perfect UMRs, but rather to stream-
line the annotation process. Similarly, for Named
Entities, UD does not provide sufficient informa-
tion to determine the correct type (e.g., person,
place, or other values from the provided UMR
hierarchy). Therefore, we assign a default place-
holder (type-NE) to be refined during annotation.
The same approach is applied to handle several re-
lations that cannot be extracted from a syntactic



tree, but where we can at least identify the broader
category (e.g., the placeholder OBLIQUE, encom-
passing various UMR relations such as temporal,
place, goal, source, and others).

3.1 Syntax-Semantics Mismatches

Mapping syntax to semantics becomes particularly
challenging when linguistic structure does not di-
rectly align with conceptual meaning. Szubert et al.
(2018) observed that, while much of the semantics
in English AMRs can be mapped to the lexical and
syntactic structure of a sentence, substantial struc-
tural differences between AMR and dependency
syntax often lead to non-isomorphic mappings be-
tween syntactic and semantic representations.

One key issue involves eventive concepts, which
do not always correspond to verbal predicates.
While verbs are prototypical carriers of event mean-
ing, many events are expressed through nominal
constructions (so-called event nominals) that lack
explicit grammatical markers of aspect (e.g., his
arrival vs. he arrived). Since UD relies on syntac-
tic categories, such nominal events are difficult to
identify automatically.4

Syntax and semantics also diverge in the case of
abstract concepts, defined as concepts that are iden-
tified and annotated even though they do not consis-
tently correspond to any overt word in the sentence.
Among those, UMR introduces a set of abstract
predicates to account for core non-verbal clause
functions, such as identity-91 (equational) and
have-mod-91 (property predication). In copula-
using languages, these often align with copular
constructions. While some heuristics can help dis-
ambiguate such structures, assigning these predi-
cates automatically based on syntax alone remains
highly challenging.

Another problematic phenomenon is re-
entrancies, where the same participant appears
multiple times in a sentence. Since UD trees do
not encode repeated participants, extracting this
information is not trivial.5 Moreover, re-entrancies
represent a form of coreference, which is typically
handled at the discourse level rather than within

4One possible approach is leveraging derivational lexicons,
but this is only feasible for high-resource languages where
such lexicons exist.

5Enhanced UD (Nivre et al., 2020) could be leveraged
to extract this type of information; however, full annotation
across all enhancement types is available for only 19 treebanks
to date. Some of the missing enhancements can be extracted
heuristically from basic UD trees, though the heuristics are
partially language-specific.

sentence-level annotation, and is outside our
current scope.

Finally, aspectual categories in UMR introduce
additional complexity. UMR provides fine-grained
aspectual distinctions, but these often rely more
on lexical semantics and human interpretation than
on overt morphosyntactic markers. For instance,
in languages like Czech or Italian, the distinction
between states and activities (in UMR annotated as
aspect) relies primarily on lexical meaning rather
than explicit grammatical cues. As a result, UD-
based approaches struggle to capture such differ-
ences effectively.

3.2 Lexical Resources

Syntactic information alone is often inadequate for
capturing semantic distinctions. In certain cases,
lexical information can provide valuable insights,
though it tends to be language-specific. To account
for this, we adopt a modular approach, design-
ing our converter to allow for the integration of
language-specific lexical resources while ensuring
that the code operates independently of them.

As of the current implementation, we have
created lexical resources to cover interpersonal
terms (used to assign the abstract predicate
have-rel-role-92), conjunctions, verbs associ-
ated with specific modal-strength values, and
subordinate conjunctions that help disambiguate ad-
verbial clauses to assign the appropriate UMR rela-
tion. This set of lexical phenomena could be further
expanded —- for example, by incorporating adver-
bials that signal specific modal-strength values
—- but we leave this for future work. Lexical re-
sources are available for Czech, English, French,
Italian, and Latin, and it is straightforward to ex-
tend this to additional languages.

3.3 Impact of UD Annotation on Conversion

We have observed that variations in the consistency
of the UD annotation have a significant impact on
conversion. As in parsing (Gamba and Zeman,
2023a,b), a lack of harmonization in treebanks
leads to error propagation, affecting the overall
quality of the conversion.

The granularity of UD annotation also influ-
ences conversion outcomes. For example, when
converting from the Italian Parallel UD Treebank
(PUD) (Zeman et al., 2017), unwanted articles
appear in the UMR graphs because the feature



PronType=Art is not annotated in the treebank.6

Without this feature, distinguishing articles from
other determiners (tagged as DET)—which do be-
long in UMR7—is not possible.

Similarly, the UD subtypes tmod and lmod,
which mark temporal and locative obl and advmod
modifiers, are not widely used across treebanks.
If consistently available, they could help disam-
biguate UMR relations such as temporal and
place.8 However, their usefulness is limited, as
these labels may also correspond to roles like
start9 or goal.10 This highlights a structural limi-
tation of UD, where syntactic distinctions are often
less fine-grained than those required by UMR.

Additionally, some specific phenomena vary too
much across languages to be handled uniformly in
conversion. A notable example is date and time
expressions, which differ widely in format, pre-
venting a systematic conversion to the standardized
UMR date-entity structure. This challenge is re-
flected by the difficulty of establishing a language-
agnostic UD annotation strategy for these expres-
sions, as noted by Zeman (2021). Even when se-
mantically equivalent, their syntactic structures are
not always compatible across languages, making it
difficult to establish universal annotation rules.

4 Evaluation

Evaluating the performance of our UD-to-UMR
conversion system is crucial for understanding its
strengths and limitations. To this end, we propose
a two-fold evaluation aimed at addressing two key
questions: (a) How accurate is the conversion?
That is, to what extent are the partial graphs con-
structed from UD syntactic information correct?
and (b) How useful is the conversion for annota-
tors? Specifically, does providing converted graphs
as a starting point help streamline annotation?

To answer the first question, we design a quan-
titative evaluation to assess the converter’s per-
formance. However, evaluating converted UMR
graphs poses challenges, as these graphs are often
incomplete due to the inherent difficulty of captur-
ing certain semantic phenomena solely from syntax.

6As of UD v2.16.
7Some determiners, like some and all in English, are in-

cluded in UMR graphs because they contribute meaning – for
example, by indicating quantity. In contrast, articles are left
out, since they typically do not add any semantic content.

8Defined in the UMR guidelines as the location at which
the action takes place.

9Location at which a motion event begins.
10Location at which the action ends.

While tools like AnCast (Sun and Xue, 2024) and
metrics like Smatch (Cai and Knight, 2013; Opitz,
2023) exist for evaluating graph-based meaning
representations, relying solely on the metrics they
provide would be insufficient. A more insightful
approach involves focusing on specific challenging
phenomena rather than just general scores. For ex-
ample, examining how well the converter handles
abstract predicates offers a clearer understanding of
its performance with complex structures. Our ap-
proach is inspired by Groschwitz et al. (2023), who
developed the GrAPES evaluation suite to assess
not only the overall performance of AMR parsers
but also their ability to handle specific linguistic
and structural phenomena. Similarly, we aim to
complement overall F1 scores with targeted evalu-
ations of key challenges in UMR conversion.
Another factor affecting evaluation is graph connec-
tivity. To prevent the generation of disconnected
subgraphs, some converted triples11 are discarded
before finalizing the graph. This happens when
the parent node cannot be converted, leaving the
subgraph unattached to the main structure. Such
trade-off ensures structural integrity, while slightly
affecting overall conversion scores and adding com-
plexity to interpretation of the evaluation results.

In addition to the quantitative evaluation, we
address the second question by conducting a time-
based evaluation. Our goal is to measure whether,
and to what extent, providing annotators with a
graph backbone (the converted UD graph) helps
them complete their annotations more efficiently.

4.1 Test Set
Our test set consists of 100 sentences per lan-
guage,12 covering Italian, English, and Czech.
Each set is composed of 30 sentences annotated
manually from scratch, and 70 automatically con-
verted graphs that were then manually corrected.
The decision to include more converted sentences
than fully manual ones stems from the fact that

11A UMR graph is essentially a collection of triples, where
triples can be of three types: 1) instances (g, instance,
‘graph’), 2) edges (r, actor, g), and 3) attributes (g,
refer-number, plural).

12However, for one sentence in Czech and English our ap-
proach did not output any graph; therefore only 99 sentences
are actually evaluated for these languages. This occurred be-
cause the conversion process discards certain triples to prevent
disconnected subgraphs. In these cases, the issue stemmed
from the top node, i.e. the root of the syntactic tree, being a
copular construction, which typically requires mapping to an
abstract predicate and is often challenging to convert. Conse-
quently, all triples became disconnected and were discarded,
preventing the generation of a graph for these sentences.



annotation from scratch is highly time-consuming
and labor-intensive. Additionally, starting from a
converted backbone ensures greater comparability
across UMRs, as multiple UMR structures can be
equally valid.

The Italian and English test sets were each an-
notated by one annotator, whereas the 100 Czech
sentences were evenly split among three annota-
tors, both for manually annotated and converted
sets. The sentences are sourced from PUD tree-
banks (Zeman et al., 2017), containing texts from
two genres (Wikipedia and news) and five original
languages, from which translations were made.13

We randomly select our test set from the complete
PUD treebank, in order to sample across both gen-
res and original languages.

4.2 Quantitative Evaluation

The evaluation proposed here aims to measure the
extent to which UD-converted UMRs align with
their manually annotated counterparts, providing a
measure of the conversion process’s effectiveness.
To structure our evaluation, we use AnCast (Sun
and Xue, 2024) to process graphs. While its built-in
metrics are insufficient for our specific needs (Sec-
tion 4), its evaluation framework remains valuable
and can be partially leveraged.

A key challenge in the evaluation is identifying
which nodes to compare between the converted and
gold-standard graphs. Typically, this task is han-
dled by the alignment block, which maps UMR
nodes to surface tokens. However, since the UMR
guidelines do not formally regulate alignment an-
notation, inconsistencies arise in the data, making
the parsing process more complex than expected.
Specifically, a major limitation we encounter is that
AnCast does not support discontinuous alignment
ranges, which are common in UMR annotations.
For instance, in a sentence like He had already ar-
rived, the alignment for the predicate arrive would
be discontinuous (aligning to had at position 2 and
arrived at position 4, i.e. 2-2, 4-4). Due to this
limitation, we are unable to use manually provided
alignment blocks and instead adopt AnCast’s au-
tomated anchor extraction method. This method
identifies a subset of highly similar node pairs be-
tween the two graphs and iteratively refines the
anchor matrix through the anchor broadcast pro-

13The first 750 sentences in PUD were originally written
in English, while the remaining 250 sentences originated in
German, French, Italian, or Spanish and were translated into
other languages via English.

cess. For a detailed explanation of this approach,
see Sun and Xue (2024).

Table 1 presents evaluation results for Czech,
English, and Italian across several linguistic cat-
egories. It includes both dependency-style eval-
uations and the phenomenon-specific evaluations
described earlier. English generally has the high-
est performance, while Czech and Italian exhibit
greater variability. Performance varies significantly
across semantic categories. For example, relatively
high scores are achieved for the assignment of
refer-person and refer-number to newly gen-
erated entities,14 or for annotation of operands
(op1, op2, ...). It indicates that these categories
are relatively straightforward to map to syntax, de-
spite structural divergences between the annotation
frameworks. In contrast, phenomena that tend not
to be overtly encoded at the syntactic level, such
as modal strength, or phenomena with very spe-
cific structures, such as inverted relations, present
significant challenges for automatic extraction.

A consistent trend across all languages is the
higher precision compared to recall; this is not sur-
prising, particularly considering that, as mentioned
in Section 4, some correct triples are discarded to
prevent graph disconnection.

A key consideration is that we adopt a strict eval-
uation approach. Specifically, there are instances
where we are unable to extract a UMR relation from
the UD tree but can at least assign a placeholder in-
dicating the broader category (e.g., OBLIQUE, Sec-
tion 3). In the proposed evaluation, these cases
have been counted as incorrect; however, there are
instances where this annotation could be consid-
ered (partially) correct, as it corresponds to a group
of UMR relations that we have defined as falling
under the broader label. Another significant limi-
tation stems from the alignment strategy, as only
nodes that are successfully aligned following the
anchor broadcast process are evaluated, meaning
that a number of triples are excluded from assess-
ment. As a result, the scores may be affected by
the fact that not all nodes are compared.

14The UMR representation of these attributes differs from
their representation in morphosyntax. E.g., the English pro-
noun he is not represented as a lexicalized concept, but it is
converted to an abstract concept person with refer-number
singular and refer-person 3rd. Moreover, in pro-drop
languages the equivalent pronoun (such as on ‘he’ in Czech)
may be omitted at the syntactic level, while it is explicitly
included in the corresponding UMR graph.



Czech English Italian
Subtype Precision Recall F1 Precision Recall F1 Precision Recall F1

Overall
parent-label 0.666 0.622 0.643 0.718 0.668 0.692 0.712 0.704 0.708

Edges
LAS 0.276 0.234 0.253 0.366 0.331 0.347 0.311 0.317 0.314*
UAS 0.516 0.437 0.473 0.582 0.527 0.553 0.493 0.503 0.498*
child-label 0.374 0.317 0.343 0.449 0.407 0.427 0.401 0.409 0.405
LAS manual** 0.234 0.257 0.245 0.168 0.219 0.190 0.237 0.260 0.248

Participants
LAS 0.222 0.203 0.212 0.362 0.303 0.330 0.304 0.269 0.285
UAS 0.380 0.348 0.364 0.502 0.420 0.457 0.432 0.383 0.406

Non-participants
LAS 0.240 0.443 0.311 0.351 0.447 0.393 0.256 0.535 0.346
UAS 0.309 0.571 0.401 0.427 0.543 0.478 0.306 0.641 0.346

Arguments
LAS 0.378 0.138 0.202 0.457 0.286 0.351 0.500 0.152 0.233
UAS 0.449 0.164 0.240 0.543 0.340 0.418 0.516 0.156 0.240

Operands
LAS 0.658 0.453 0.536 0.613 0.575 0.594 0.714 0.533 0.610
UAS 0.671 0.462 0.547 0.642 0.602 0.621 0.725 0.541 0.620

Entities
LAS refer-number 0.862 0.403 0.549 0.952 0.385 0.548 0.875 0.167 0.280
LAS refer-person 0.889 0.706 0.787 0.900 0.281 0.429 1.000 0.241 0.389

Modal strength
LAS polarity 0.704 0.605 0.651 0.813 0.688 0.745 0.870 0.637 0.735
LAS strength 0.180 0.155 0.166 0.224 0.189 0.205 0.235 0.172 0.199

Inverted relations
UAS 0.364 0.112 0.171 0.426 0.294 0.348 0.667 0.184 0.288
child-label 0.250 0.077 0.118 0.277 0.191 0.226 0.417 0.115 0.180

Abstract predicates
parent-label predicate 0.410 0.211 0.278 0.581 0.340 0.429 0.548 0.274 0.366
UAS dependents 0.487 0.447 0.466 0.565 0.565 0.565 0.500 0.500 0.500
LAS ARG nodes 0.397 0.437 0.416 0.500 0.620 0.554 0.500 0.633 0.559

Table 1: Evaluation results on the test set for Czech, English, and Italian.
Inspired by dependency syntax (Buchholz and Marsi, 2006), LAS (Labeled Attachment Score) requires all three
components of a dependency triple to be correct (parent, edge, child), whereas UAS (Unlabeled Attachment
Score) evaluates the correctness of the child-parent relation, disregarding the edge label (parent, child). We
extend these metrics by introducing child-label (edge, child) and parent-label (parent, edge). The Overall
category includes all triples, since the parent-label metric is relevant for more than just edges. Edges considers only
Edge triples, while the subsequent italicized lines correspond to particular subtasks. Specifically, for Participants,
Non-participants, Arguments, and Operands, Edge triples are filtered based on whether the edge belongs to one of
these four categories. More fine-grained phenomena are then evaluated, as described below.
Entities: we evaluate how correctly refer-number and refer-person are assigned to newly-generated abstract
concepts representing entities (see 4.2).
Modal strength: we separately assess if the polarity (positive, negative) and strength (full, partial, neutral)
values are correctly assigned.
Inverted relations: we evaluate the reported metrics exclusively for inverted triples (e.g., actor-of).
Abstract predicates (AP): the predicate subcategory measures how accurately predicate labels of APs representing
core non-verbal clause functions (e.g., identity-91) are assigned, considering only Instance triples; dependents
evaluates how correctly the child nodes of an AP are assigned to it; ARG nodes refers to the correct assignment of
arguments to the parent, that is the AP.
* To assess the influence of automatic alignment on evaluation metrics, we manually aligned 10 Italian sentences.
On this manually aligned sample, we achieved a LAS of 0.277 and a UAS of 0.569.
** LAS measured on the 30 fully manual sentences only.



Manual Converted Time Reduction
sentence length time (min) sentence length time (min)

Czech 17.13 31.57 15.29 17.62 44.24%
English 20.13 10.17 18.40 9.35 8.07%
English (2) 16.90 20.20 17.50 10.48 48.12%
Italian 21.23 11.07 19.51 7.66 30.78%

Table 2: Average annotation time (in minutes per sentence) and sentence length (in number of tokens, excluding
punctuation) for each language and annotation approach, and observed time reduction from conversion. Italics
indicate the less experienced annotator of the English subset.

(a) Czech (manual) (b) English (manual) (c) Italian (manual)

(d) Czech (converted) (e) English (converted) (f) Italian (converted)

Figure 2: Correlation between sentence length and annotation time for Czech, Italian, and English. The x-axis shows
the sentence length (number of tokens, excluding punctuation); the y-axis represents the time taken to annotate each
sentence in minutes. Each point corresponds to a specific sentence.

Language Type Score
Pearson Spearman

Czech manual 0.660 0.773
converted 0.658 0.760

English manual 0.728 0.797
converted 0.754 0.737

Italian manual 0.858 0.808
converted 0.770 0.782

Table 3: Pearson’s correlation and Spearman’s rank for
sentence length (in tokens) vs. annotation time.

4.3 Time-based Evaluation

The second evaluation assesses the impact of boot-
strapping UMRs from UD on the efficiency of the
annotation process, specifically measuring whether
converted graphs help annotators work faster. To
this end, we compare the annotation time required

under two conditions (see Subsection 4.1): (1)
30 sentences are manually annotated from scratch
and (2) for 70 sentences, annotators are given the
conversion-generated graph and asked to make cor-
rections. For each condition, the annotation time
per sentence is recorded and the results are aver-
aged within each group (Table 2). These average
times are then analyzed in relation to the sentence
length, measured by the number of tokens (Table 3,
Figure 2). This approach allows us to assess the
effectiveness of the conversion in streamlining the
annotation process, particularly as it scales with
sentence complexity.

The results confirm that automatic conversion
substantially reduces annotation time, though the
extent of improvement varies across languages.
As shown in Table 2, Czech benefits the most
from conversion, with a 44.24% reduction in an-



notation time, followed by Italian (30.78%) and
English (8.07%). These differences suggest that
language-specific factors may influence conversion
efficiency; some languages might inherently bene-
fit more from pre-annotated structures, while others
appear to gain less. A key factor is annotator ex-
pertise: since the English annotator is the most
experienced, the conversion process may have pro-
vided limited time savings. In contrast, less ex-
perienced annotators may benefit more from pre-
converted graphs, as they reduce the need for exten-
sive manual work; this is likely part of the explana-
tion of the longer times and greater time reduction
in Czech. To test the role of experience, a less ex-
perienced annotator annotated a subset of English
sentences.15 The observed reduction in annota-
tion time (48.12%) supports our hypothesis that
experience plays a crucial role in benefiting from
converted graphs.

Table 3 investigates the correlation between sen-
tence length and annotation time for both manual
and converted approaches. The results confirm that
sentence length is a strong predictor of annotation
time, with generally high correlations observed
across all languages. In most cases, manual anno-
tation exhibits slightly stronger correlations than
converted annotation. This suggests that sentence
length influences manual annotation time more di-
rectly, whereas the conversion approach introduces
additional variability, possibly due to errors that
require corrections. Despite these differences, the
correlations for the converted method remain rela-
tively close to those for the manual method, imply-
ing that conversion does not fundamentally alter the
relationship between sentence length and annota-
tion time. Instead, it mainly accelerates the process
while maintaining a similar complexity pattern.

5 Conclusion and Future Work

In this paper, we introduced an approach to boot-
strap UMR graphs from UD trees. The approach
was evaluated from two angles: the accuracy (LAS)
of generated graphs, and the relative speedup of
manual work. Multiple UD-related factors were
discussed as possible obstacles for better results
(but we cannot measure the impact of each such
factor separately). And even if some semantic rela-
tions cannot be accurately extracted from syntax,
the proposed conversion method has proven to be a

1510 sentences were annotated manually from scratch, while
for 20 sentences the annotator had to correct generated graphs.

valuable tool for annotation. By automating part of
the process, it helps to make the annotation work-
flow faster, reducing the time and effort needed for
annotators to complete their tasks. Given the broad
availability of syntactic parsers, the potential of this
approach is significant. In principle, a dependency
parser can be applied to any dataset to generate
the syntactic tree, which can then be converted to
UMR. This makes the method highly accessible
and scalable for a wide range of linguistic datasets.

Future work includes extending evaluation to a
broader range of typologically diverse languages
to further assess the robustness of the proposed
approach. While the current results already demon-
strate cross-linguistic applicability, additional test-
ing on languages with different syntactic structures
and morphologies will provide deeper insight into
the generalizability and limitations of the conver-
sion process. Additionally, refining specific conver-
sion choices—such as improving aspect annotation
and integrating named entity recognition (via ded-
icated NER tools or the Universal NER project
(Mayhew et al., 2024)) could enhance semantic
accuracy. To maximize the scalability of this ap-
proach, we also plan to develop a comprehensive
guide to complement the existing technical docu-
mentation, making it easier for new users to apply
the converter to additional languages.
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