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Abstract

This paper introduces the ExpLay-Pipeline, a
novel semi-automated processing tool designed
for the analysis of language production data
from experts in comparison to the language pro-
duction of a control group of laypeople. The
pipeline combines manual annotation and cu-
ration with state-of-the-art machine learning
and rule-based methods, following a silver stan-
dard approach. It integrates various analysis
modules specifically for the syntactic and lexi-
cal evaluation of parsed linguistic data. While
implemented initially for the creation of the
ExpLay-Corpus, it is designed for the process-
ing of linguistic data in general. The paper
details the design and implementation of this
pipeline. To demonstrate the pipeline’s capabil-
ities and explore linguistic markers of expertise,
we present the initial release of the ExpLay-
Corpus. This corpus comprises German oral
descriptions of urban landscapes elicited from
architectural students (characterized as a semi-
expert population) and a group of matching
laypersons. Using the ExpLay-Pipeline, prelim-
inary analyses of syntactic and lexical complex-
ity between these two groups were conducted.
While the primary focus of this work lies on
the architecture of the pipeline and its annota-
tion methodology, these preliminary findings
serve to showcase the pipeline’s functionality
and establish ExpLay as an accessible resource
for future research on linguistic markers of ex-
pertise.

1 Introduction

This research is grounded in three core assumptions
concerning the influence of expertise on cognition
and language production.

First, it draws on the principle of linguistic rel-
ativity (Whorf, 1956; Slobin, 1996), which postu-
lates that language plays a role in shaping thought,
attention allocation, and cognition in general. Em-
pirical support for linguistic relativity has been doc-
umented across various cognitive domains, includ-

ing color perception (Winawer et al., 2007; Rober-
son et al., 2000), the conceptualization of motion
events (Slobin, 1996; Papafragou et al., 2008) and
the use of spatial frames of reference (Levinson,
2003; Majid et al., 2004).

Second, effects similar to linguistic relativity
are observed beyond language: Expertise, whether
professional or personal, can shape cognition in
a manner analogous to language. For instance, a
neuro-imaging study (Maguire et al., 2000) found
structural alterations in the posterior hippocampus
of taxi drivers compared to non-drivers, suggesting
that its expansion results from extensive naviga-
tional experience. Other findings reveal a signif-
icant improvement in reaction time for e-sports
players (Ersin et al., 2022) as well as decision
making and dexterity (Jiang et al., 2020) for non-
professional gamers (semi-experts), compared to
laypeople. Effects of domain-specific expertise on
attention and cognition have also been documented,
for example in the field of architecture. In a pre-
vious eye-tracking study using stimuli similar to
those in the present research, Mertins et al. (2020)
found that architects and laypeople differ systemat-
ically in how they allocate visual attention. While
laypeople focused more on human figures in in-
door scenes; architects attending to outdoor scenes
concentrated longer on architectural elements, par-
ticularly upper-level features like roofs, whereas
laypeople remained focused on elements at eye
level.

Third, rational communication aims to maintain
linguistic code maximally efficient and to this end
adapts dynamically to situational and communica-
tive demands. Just as language influences cog-
nition, expertise influences language production.
This is reflected in domain-specific, conventional-
ized linguistic codes (Teich et al., 2021), which fa-
cilitate both perception and communication within
specialized fields. Such patterns are evident in
domain-related language use and mirror the cogni-



tive effects of linguistic relativity discussed earlier.
This phenomenon has been observed across various
domains, including literary discourse (Degaetano-
Ortlieb and Piper, 2019), the physical sciences (Hal-
liday, 1988/2004), and diachronic shifts in scien-
tific English (Degaetano-Ortlieb and Teich, 2022,
2018; Biber et al., 2011; Biber and Gray, 2016;
Juzek et al., 2020) as well as scientific German
(Jakobi et al., 2024). Domain-specific features also
emerge in the use of linguistic structures such as
compounding (Gamboa et al., 2025) and metaphor
usage (Halliday, 1988/2004; Webster, 2018) in sci-
entific and technical texts.

Despite growing interest in the cognitive effects
of expertise, little is known about how architec-
tural expertise influences spatial cognition and its
linguistic encoding. This study addresses this gap
by analyzing how architects describe urban and
natural landscapes. To investigate the linguistic
manifestations of expertise in architecture, a dedi-
cated corpus resource was curated and subjected to
a preliminary linguistic analysis.

As an initial exploratory step, the study focused
on syntactic and lexical complexity as indicators
of domain-specific language use, comparing the
speech production of semi-expert participants (stu-
dents of architecture) with that of non-expert con-
trols (students of German language and literature).
The metrics selected incorporate a range of syn-
tactic and lexical measures, thereby capturing a
broad variety of structural linguistic features that
may exhibit domain-specific variation across the
two groups. Given the central role of communica-
tive efficiency, we decided to focus on linguistic
complexity as a suitable entry point for exploration
of experts’ language use. A higher communicative
efficiency is often associated with denser, more
complex structures (compared to more linear con-
structions), suggesting the hypothesis that expert
language production may exhibit greater structural
complexity than that of non-experts.

This preliminary analysis primarily serves to
demonstrate the capabilities of the parsing and eval-
uation pipeline presented in this paper. It is not
intended as an exhaustive account of architectural
expertise in language use.

2 Previous work

Most existing studies on complexity measures such
as dependency length so far focus on dependency
processing (Juzek et al., 2020; Futrell et al., 2015)

rather than on dependency production. Moreover,
they tend to treat expertise as a factor either in
the processing of other expert’s data (Jakobi et al.,
2024) or in written expert language such as scien-
tific discourse (Banks, 2003; Biber et al., 2011).
Studies applying the Universal Dependencies (UD)
framework (de Marneffe et al., 2021) to spoken
data usually focus on the creation of spoken lan-
guage treebanks (Dobrovoljc, 2022; Dobrovoljc
and Nivre, 2016) rather than addressing differences
between the groups of speakers who produced the
linguistic data for those treebanks in the first place.

While Dobrovoljc and Nivre (2016) at least ad-
dress some particularities of oral data during the
annotation process of the resource, in general very
little attention is given to the characteristics of the
speakers who produced the linguistic material and
possible differences among groups (such as experts
vs. non-experts). To address the gap between these
two areas, the present study curates experimen-
tally elicited spoken data from both expert and non-
expert participants. In doing so, it offers a novel
corpus resource to facilitate further investigation
into how expertise shapes linguistic structure in
spoken language.

This approach is motivated in particular by the
eye-tracking findings of Mertins et al. (2020),
which revealed systematic domain-dependent dif-
ferences in visual attention patterns between archi-
tects and non-architects. These findings suggest
domain-specific cognitive processing, and, by ex-
tension, the possibility of domain-specific linguis-
tic realizations of such cognitive behaviors, con-
sistent with the study’s core assumptions. So we
aspire to use a corpus-based and computational
linguistic approach to analyze verbalizations in a
similar experimental set-up as the one used in the
eye-tracking study.

To conduct an initial exploratory analysis of po-
tential syntactical and lexical differences between
expert and non-expert verbalizations in addition
to the curation of the resource itself, this study
draws on established (syntactic and lexical) com-
plexity metrics. These include dependency distance
(Gibson, 1998; Futrell et al., 2015), dependency
and constituent-tree tree height (Yngve, 1960),
dependency-based clause count (Biber, 1988; Lu,
2011), and constituency-based phrase count (Lu,
2011) as well as word class (Shi and Lei, 2021).
Additionally, following the methodology of Park
(2024) we apply Principal Component Analysis
(PCA) to generate a combined syntactic complex-



ity score, using the PC-loadings to determine the
weightings of individual metrics contributing to the
combined score.

3 ExpPlay release

The initial release of the ExpLay-Resource com-
prises the raw (unparsed) data, the parsing and eval-
uation pipeline, as well as the parsed corpus of ex-
perimentally elicited spoken language produced by
experts and non-experts in the field of architecture.
Following the silver standard approach described
in (Rebholz-Schuhmann et al., 2010), the dataset
was manually pre-processed, automatically parsed,
and partially curated across multiple linguistic lev-
els using the ExpLay-Pipeline introduced in this
paper. This pipeline integrates several state-of-the-
art tools for natural language processing, linguistic
annotation, and the evaluation of linguistic struc-
tures. The full resource including the pipeline and
corpus is made freely available on Gitlab.1 The
entire dataset can be accessed under a CC BY 4.0
license on OSF2, to support open-access initiatives
and facilitate accessible future research in linguis-
tics.

3.1 Data collection

A controlled, online language production experi-
ment was conducted via Zoom, in which partic-
ipants were asked to orally describe a series of
images depicting urban and natural environments
(Figure 1). The images were presented one at a time
in randomized order, and participants were given
unlimited time to respond. The participants were
instructed to describe each scene as if speaking to
an artist who had never seen it and would need to
recreate it through drawing. This task design in-
tentionally avoided priming architecture students
to adopt an expert-oriented communicative regis-
ter, thereby ensuring that both groups (experts and
non-experts) shared a common baseline assump-
tion about their audience. As a result, any observed
effects in the expert group’s descriptions can be in-
terpreted as reflecting general language processing
and cognitive-linguistic tendencies influenced by
the presence or absence of architectural expertise
of the respective participant group, rather than from
professional communication demands.

1Gitlab: https://gitlab.ruhr-uni-bochum.de/
schaccmr/explay-resource.git.

2The entire dataset is made freely available
on OSF: https://osf.io/ky87h/?view_only=
4a0c7ae6a07c4fe89bc8632787742616.

All descriptions were produced in German,
which was the native language of all participants.
Afterwards, a second group of laypeople with no
architectural background completed the same task
under identical conditions. for the present study,
an initial sample of 13 participants per group was
selected from a larger pool of participants. The
control group was deliberately selected to closely
match the architect group in gender, age, and mul-
tilingual status, thereby controlling for potential
confounding variables while isolating the influence
of domain-specific expertise. This study design
allows to compare language use between partici-
pants with and without architectural training, while
keeping other demographic and linguistic factors
constant.

Because the expert sample in this study con-
sists of architecture students rather than practic-
ing architects with extensive professional experi-
ence, the level of domain-specific expertise must
be interpreted with some caution and can thus be
more appropriately characterized as a semi-expert
group. Nevertheless, we still anticipate some mea-
surable differences between students with architec-
tural training and those without, reflecting varying
degrees of architectural knowledge.

The resulting initial sample for the ExpLay-
Resource comprises 13 participants per group:
Among the experts, 5 were male and 8 female;
among the laypeople, 4 were male and 9 female.
All participants were between 19 and 32 years old.
Each group included 12 monolingual and 1 bilin-
gual speaker. All oral descriptions were recorded,
transcribed, and subsequently analyzed.

Figure 1: Experimental set-up in the verbalization ex-
periment showing the used visual stimuli.

For this initial release of the ExpLay corpus,
only the urban environment stimuli (images B1 to
B5) were selected, as these are more likely to elicit
domain-specific differences between expert and

https://gitlab.ruhr-uni-bochum.de/schaccmr/explay-resource.git
https://gitlab.ruhr-uni-bochum.de/schaccmr/explay-resource.git
https://osf.io/ky87h/?view_only=4a0c7ae6a07c4fe89bc8632787742616
https://osf.io/ky87h/?view_only=4a0c7ae6a07c4fe89bc8632787742616


Dummy Token Function Category
% Grammatical correction 1
& Insertion of ellipsis (oral structure) 2
$ Insertion of ellipsis (stylistic structure) 2
§ Nominalization 3
@ Substantivized determiner/quantifier 3

Table 1: Overview of dummy tokens used to mark different types of insertions in the data.

non-expert participants due to their closer thematic
alignment with architectural expertise. The natural
environment stimuli will be included in a future
release. Each participant contributed five text pro-
ductions, resulting in a total of 130 descriptions in
the current version of the resource.

3.2 Data curation

To prepare the transcripts for annotation, the oral
productions were first extracted and cleaned accord-
ing to a strict protocol aimed at ensuring compara-
bility while preserving the integrity of the original
data.

Collect
data

Pre-annotate
compounds

CorPipe23
Pipeline

Curate
compounds

ExpLay-
Corpus

Future
work

ExpLay-
Pipeline

Insert
dummy
tokens

Transcribe
and clean
data

Figure 2: Workflow of ExpLay’s curation process.

Cleaning involved the removal of filler particles
and inaudible segments, which are excluded from
the current release. Subsequently, the cleaned tran-
scripts were manually annotated. Different dummy
tokens (see Table 1 for details) were inserted to flag
(1) ungrammatical structures that do not impede
comprehension, (2) elliptical constructions typical
of spontaneous speech or used for stylistic effect,
and (3) elliptical references, such as nominalized
adjectives. Category 3 tokens include the inferred
original token in parentheses. Deleted structures
are indicated with pipe symbols marking the start
and end of the omitted span. Incomprehensible sen-
tence parts (those severely ungrammatical to the
point of impeding interpretation) were also marked.

Although excluded from the parsed versions used
for analysis, these segments are preserved in the
unparsed data to support potential future research.
Insertions are encoded using special characters that
indicate the type of dummy-token (see Table 1).
In the case of category 3 dummy-tokens, the origi-
nal token is added in parenthesis after each inser-
tion. Section 3.3 will show in more detail how
those dummy-token insertions are handled in the
pipeline, and Section 3.4 will show the different
versions of the parse.

After annotating dummy tokens and incompre-
hensible structures, the transcripts are fed into the
ExpLay-Pipeline described in Section 3.3. This
pipeline performs automatic parsing and multi-
level linguistic evaluation and is included as part
of the ExpLay-Resource release. Subsequently,
compound words were pre-annotated using a modi-
fied version of the Tuggener compound-split com-
pound splitter (Tuggener, 2016) and then manually
curated. In the final step, coreference annotation
was conducted using the CorPipe23 system (Straka,
2023). An overview of the complete annotation and
curation workflow of the ExpLay-Resource is illus-
trated in Figure 2, and Section 3.4 summarizes the
resulting parsed data versions.

3.3 ExpLay-Pipeline

The ExpLay-Pipeline was implemented for the cre-
ation of the ExpLay-Corpus specifically and for the
processing of expert-language data in general and
is available in the repository. It is implemented in
Python (Van Rossum and Drake, 2009), an untyped
open-access programming language, and incorpo-
rates several state-of-the-art natural language pro-
cessing systems (see Figure 4 for a depiction of the
pipeline’s architecture).

The ExpLay-Pipeline processes .txt files lo-
cated in a designated directory, each containing
curated transcripts that have undergone dummy-
token annotation and the removal of ungrammat-
ical structures (see 3.1). Meta-data of partici-



Figure 3: Exemplary parse of a sentence from participant P002/ stimulus B1. Note that the linear representation of
the constituent trees was truncated for the illustration.

pants must be encoded in the filename in a fixed
order using the format: participant-ID, gender,
expert-status, stimulus-ID and language status (e.g.
P001_F_L_B1_M_.txt). Each .txt-file in the di-
rectory is parsed individually, returning both in-
dividual and aggregate output statistics. During
pre-processing, three versions of each transcript
are created from each original .txt file: (1) A
raw-version with all ungrammatical structures and
dummy-tokens removed, (2) a cleaned-corrected
version, which mirrors the raw-version but retain-
ing the correction dummy-tokens and (3) an all-
dummy-version, containing all dummy-tokens but
excluding ungrammatical structures. To ensure
compatibility with parsing tools, the pipeline re-
moves the special character markers from the text-
string and stores them as a separate object. There-
fore, the original text production transcript itself
cannot contain any of the special characters used
to mark the dummy-tokens, as the pipeline would
interpret those as dummy-token markers.

All three versions are then parsed using the
stanza pipeline (Qi et al., 2020) applying the fol-
lowing processors: tokenize, POS, lemma and
depparse. Stanza is an NLP toolkit that provides
models for several different languages and a range
of NLP tasks. The POS processor returns part-of-
speech (POS) annotations and the depparse pro-
cessor generates dependency annotations – both
following the Universal Dependencies (UD) frame-
work, which aims to standardize the format of var-
ious annotations, such as dependencies and POS-
tags. The stanza pipeline returns the parsed data in
the standardized .conllu format(Universal Depen-
dencies Consortium, n.d.a), which is broadly sup-
ported by NLP tools. After parsing with stanza, the
ExpLay-Pipeline re-introduces the dummy-token
markers into the .conllu formatted parse by insert-
ing the marker into the MISC column of the respec-
tive tokens in the .conllu file. This ensures that

inserted tokens remain traceable for subsequent
analysis.

Next, the parsed data is fed into the Berkeley
Neural Parser (Kitaev and Klein, 2018), an NLP
library providing state-of-the-art self-attentive lan-
guage models for parsing various linguistic struc-
tures such as constituencies, which it returns in
the form of an NLTK-tree object from the NLTK
library (Bird et al., 2009). The parser uses the re-
vised Penntreebank (PTB) tag-set of the English
News Text Treebank (Bies et al., 2015) for the con-
stituency nodes and the POS-tags. The multilingual
model benepar_en3 is used, as it is more robust
than the German model and can also handle Ger-
man data. After parsing the constituency structure
of each version of a single production, the ExpLay-
Pipeline creates a duplicate of the constituency tree
and exchanges the revised PTB POS-tags for the
upos-tags from the stanza-parse. This way, two
trees are parsed, containing both sets of POS-tags.
The trees are then stored as commentary lines be-
tween the sentence-ID and the parse in the .conllu
format. Those are exported as .conllu files as sin-
gle parses and added to a collective .json file con-
taining the entire dataset of each version organized
by the meta-data encoded in the filenames for easy
access. For an exemplary parse of a sentence see
Figure 3.

Lexical
Evaluation

Syntactic
Evaluation

Frequency
Extraction

Parsing
Module/
Curation

Dummy
Tokens

Figure 4: Architecture of the ExpLay-Pipeline.

Subsequently, the rawfile-version is passed to
the frequency-extraction module of the pipeline,
which collects various linguistic frequency mea-
sures both into single and collective .csv files.
It collects simple surface measures such as word-
and sentence-count and the usage of all POS-tags,



but also more linguistically complex structural
measures from the constituency and dependency
frameworks based on previous findings regarding
the influence of those metrics on syntactic com-
plexity. These structural measures include depen-
dency distance (Gibson, 1998; Futrell et al., 2015),
dependency and constituent-tree tree height (Yn-
gve, 1960), dependency-based clauses count (Biber,
1988; Lu, 2011), and constituency-based phrase
count (Lu, 2011). It should be noted, that due to
the spontaneous, oral nature of the linguistic data,
sentence boundaries, although defined as precisely
as possible during transcription, should ultimately
be regarded as approximations.

The extracted frequency data is then exported
as both individual and aggregated files for further
analysis. The aggregated data from the raw-version
is then processed through the syntactic and lexical
analysis modules of the pipeline, which utilize the
libraries Pandas (pandas development team, 2020),
NumPy (Harris et al., 2020), SciPy (Virtanen et al.,
2020) and Sklearn (Pedregosa et al., 2011). The
syntactic module first assesses the normality of
the data distribution using the Shapiro-Wilk test
(Shapiro and Wilk, 1965) (see Equation 1). De-
pending on the outcome, statistical significance
is evaluated using either a t-test for normally dis-
tributed data (Student, 1908) (see Equation 2 and 3)
or the Mann-Whitney-U test (Mann and Whitney,
1947) (see Equation 4) for non-normally distributed
data. It simultaneously tests for effect size using
Cohen’s delta (Cohen, 1988) (see Equation 5) if
the data is distributed normally or a Rank-Biserial
correlation (Cureton, 1956) (see Equation 7) for
non-normal distributions.

W =

(∑n
i=1 aix(i)

)2∑n
i=1(xi − x̄)2

(1)

t =
X̄1 − X̄2√
s2p

(
1
n1

+ 1
n2

) (2)

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(3)

Following these calculations, all metrics show-
ing significant group differences are collected
and normalized using Z-score standardization (see
Equation 8), centering the data around a mean of
0 and a standard deviation of 1 while preserving
the general shape of the distribution. Principal
Component Analysis (PCA) (Jolliffe, 2002) (see

Equations 9 and 10 ) is then performed, follow-
ing the approach outlined in Park (2024) to assess
the contribution of each metric to overall group
variance.

U = n1n2 +
n1(n1 + 1)

2
−R1 (4)

d =
X̄1 − X̄2

sp
(5)

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(6)

rrb = 1− 2U

n1n2
(7)

Principal Component loadings from the PCA,
that represent linear combinations of the original
metrics, are used to derive weights for a combined
syntactic complexity score, which is likewise re-
alized as a linear combination of the significant
metrics.

Z =
X − µ

σ
(8)

Z = XW (9)

PCk =

n∑
i=1

w
(k)
i Xi (10)

Then the module calculates a combined syn-
tactic complexity score as a weighted sum of all
the significant metrics normalized with min-max-
normalization (see Equations 11 and 12) into a final
dataset for a last test of normality, significance and
effect-size as well as Pearson’s r (see Equation 13)
for a correlation between the PCA results and the
combined syntactic complexity score.

X ′ =
X −Xmin

Xmax −Xmin
(11)

C =
m∑
i=1

wi ·Xi (12)

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
∑

(Yi − Ȳ )2
(13)

In the final step, the lexical module of the
ExpLay-Pipeline estimates lexical complexity by
computing the frequency of open and closed word
classes, following the approach of Shi and Lei



(2021), who (among other factors) investigated lex-
ical complexity on the basis of word class in the
context of social class differences — a framework
also applicable to the study of expertise as a factor
influencing language. The classification is based on
the upos-tags from the Stanza parse, following the
Universal Dependencies (UD) project (Universal
Dependencies Consortium, n.d.b):

• Open class or lexical words: ADJ, ADV,
INTJ, NOUN, PROPN, VERB

• Closed class or grammatical words: ADP,
AUX, CCONJ, DET, NUM, PART, PRON,
SCONJ

• Other: PUNCT, SYM, X

Mirroring the process of the syntactic module,
the lexical module applies the same statistical pro-
cedures as the syntactic module to assess distribu-
tion (test for normality), significance, and effect
size. Both modules export the results as .csv files
to a results folder in the directory. In addition, the
modules also generate various plots visualizing the
significance tests outcomes and the PCA results.
The graphics are exported to a plot folder inside the
results folder using the Python libraries Matplotlib
(Hunter, 2007) and Seaborn (Waskom, 2021) for
visualization.

3.4 ExpLay-Corpus
The resulting ExpLay-Corpus consists of three
parsed versions per transcribed verbalization, cor-
responding to the three previously mentioned ver-
sions: The raw-version, the cleaned-corrected-
version, and the all-dummy-version. These ver-
sions are stored in .conllu files, along with addi-
tional collective .json files containing the entire
dataset. The results amount to three parses of the
130 texts and three files of the complete parse. Each
individual parse consists of 11778 parsed tokens,
derived from the raw-file version. Each of the three
versions are enriched with two iterations of the con-
stituency trees generated from the Benepar module,
which are added before each sentence. The raw-
file version was chosen for the evaluation modules
as it best preserves the original text and includes
minimal alternations, therefore providing a reli-
able basis for text-level comparison between the
two groups. This choice can be manually adjusted
should the application of the pipeline on future
corpora require the evaluation of a different parse
version.

Figure 5: Exemplary .json file entry from the production
of P002/ stimulus B1 including the compound parse of
the noun ‘Bürgersteig’ (Engl. sidewalk).

After parsing and evaluation with the ExpLay-
Pipeline, the all-dummy-version was fed into the
CorPipe23 (Straka, 2023) module for coreference
parsing and pre-parsed using a derivation of the
Tuggener (2016) compound-split compound split-
ter for compound words. The rationale behind this
choice of parse iteration was that curation costs
should be kept minimal, therefore only one of
the parses should be annotated and curated for
compound words. The all-dummy version was
selected for compound word annotation to mini-
mize curation efforts, as it can be easily mapped
back to the raw-file version. The compound
parse was then manually curated and stored in the
MISC column of the respective token in the .json
parse, using the format ‘NoC’ for non-compound
words or the pattern ‘compound’: [(‘first
constituent’, ‘tail’, ‘-’), (‘second
constituent’, ‘head’, ‘remaining part of
compound’, ‘linking element’)] for com-
pound words with two constituents (see Figure
5). This representation uses the maximum split
approach and does not account for the branching
direction in multi-constituent compounds.

4 Preliminary analysis of syntactic and
lexical complexity

In a preliminary evaluation of the newly created
corpus, the syntactic and lexical evaluation mod-
ules of the ExpLay-Pipeline were applied to the
rawfile-parse of the corpus. This served two pur-
poses: running a field test on the pipeline and the
evaluation modules, as well as providing an initial
exploration of the new resource.



4.1 Syntactic metrics

The previously described syntactical metrics eval-
uated in the pipeline include dependency dis-
tance, dependency and constituent tree height,
dependency-based clause count, and constituency-
based phrase count. Additionally, the pipeline also
calculate surface measures such as sentence count
and average tokens per sentence, but – as stated
earlier – the annotated sentence boundaries should
be considered with some reservations. For a com-
plete display of the descriptive measures calculated
for the ExpLay Corpus see Table 4 in Section A.
The module then tests the data for normality, sig-
nificance and effect size using the previously men-
tioned tests. Significant individual metrics are then
combined into a combined syntactic complexity
score. PCA is conducted on the chosen individual
metrics and the resulting principal component load-
ings are used as weights for the combined score.
Finally, a second round of normality, significance,
and effect size tests is applied to the combined
metric scores.

Metric p-value Cohen’s d RB
sent-count 0.75 0 0.03
tok-per-sent 0.25 0 -0.11
dep-dist 0.41 0.14 0
num-clauses 0.18 0 -0.14
dep-tree-height 0.31 0 -0.10
con-tree-height 0.05 0 -0.02
num-phrases 0.22 0 -0.13

Table 2: p-values, Cohen’s d and Rank-Biserial correla-
tion values of the single syntactic metrics before running
the PCA.

4.2 Lexical metric

To calculate the lexical metric, the pipeline first cal-
culates the count of open and closed word classes
per text by adding up the counts of the single POS-
tags per text according to the categorization of the
UD-project. Then the same statistical tests as in
the syntactic module are applied to those measures
to test for normality, significance and effect size.

4.3 Results

Of the syntactic metrics analyzed for the 13 speak-
ers per group reported in this paper, only con-
stituent tree height showed a statistically signifi-
cant group difference (p < .05), with a moderately
small effect size. Experts exhibited slightly higher

average tree heights than laypeople (see Table 4
in Section A), suggesting a tendency toward more
deeply embedded, hierarchically complex sentence
structures, in opposition to the laypeople’s use of a
slightly flatter syntax.

In contrast, surface-level syntactic features (e.g.,
sentence length, tokens per sentence) and lexical
measures (e.g., distribution of word classes) did not
differ significantly between groups, as can be seen
in Table 2 for the significance values of the syntac-
tic metrics, as well as in Table 3 for the evaluation
of the lexical measures. Not only do the experts
produce longer descriptions in general, they also
display a slightly elevated use of open word classes
compared to the laypeople, even though the differ-
ences did not turn out to be significant.

For a graphical visualization of the distribution
of word classes among the two groups as well as for
an exemplary output of the visualization module
of the pipeline see also Figure 6. These features,
however, are less sensitive to hierarchical syntactic
depth as constituent tree height. The elevated tree
height in expert speech points to denser phrasal lay-
ering, potentially reflecting more domain-specific
and information-dense language use, in line with
prior findings on expert discourse such as scientific
writing. Laypeople on the other hand seem to use
more shallow and linear constructions.

As no other syntactic measures reached signifi-
cance, the combined syntactic complexity metric is
identical to constituent tree height and is thus not
reported separately.

Figure 6: Boxplots of the descriptive values of the lexi-
cal metric.

4.4 Conclusion
The application of the ExpLay-Pipeline on data-
sets exports both individual and composite met-



Group mean sd min max median p-value Cohen’s d RB
L-open 41.86 23.81 16.0 127.0 35.0 0.73 0 -0.04
L-closed 36.98 20.64 14.0 113.0 32.0 0.66 0.08 0
E-open 42.97 22.80 20.0, 132.0 34.0 0.04 0 -0.02
E-closed 38.62 21.99 18.0 130.0 31.0 0.12 0 -0.16

Table 3: Evaluation of the lexical metric.

rics, accompanied by normality assessments, signif-
icance tests, effect sizes, and Pearson correlations
to assess group differences. The current paper’s
goal is primarily to showcase the range of syntactic
and lexical measures the ExpLay-Pipeline can gen-
erate. We anticipate that increasing the participant
number to at least 40 speakers per group in the
future would enhance statistical power and reveal
more differences between experts and laypeople.

These preliminary findings suggest that while
both experts and non-experts use similar syntac-
tic elements, they differ in the degree of syntactic
complexity, with constituent tree height capturing
features of structural depth possibly not reflected in
other metrics. Given the exploratory nature of this
initial analysis and the current limited number of
speakers as well as the limitation to verbalizations
of half of the described images, these results are
not to be considered definitive. Future inclusion
of the remaining parsed stimuli as well as more
speakers will provide a more comprehensive basis
for analysis.

However, this first evaluation offers initial evi-
dence of domain-specific linguistic patterns in ex-
pert discourse in the domain of architecture in
addition to the primary objective of this study:
showcasing the functionality of the new pipeline.
The observed increase in structural complexity (de-
spite similar lexical and surface-level syntactic
measures) raises the hypothesis of more complex
linguistic structures in the expert population com-
pared to the more linear constructions in the control
group and consequently of a higher information
density in expert language. This, in turn, opens up
promising directions for future research, including
semantic analyses and computational approaches
of machine learning, to explore whether such struc-
tural differences persist across additional linguistic
features.

Limitations

This study is limited in both its disciplinary scope
and linguistic coverage: the data was collected for

the specific domain of architectural expertise and
in the German language, which may constrain the
generalizability of the findings to other domains
or languages. The current dataset includes speech
from 26 participants (13 architects and 13 non-
architects), each describing five stimuli. This rel-
atively small sample size, along with the limited
number of stimuli, restricts the statistical power
and robustness of the analyses. Therefore, statisti-
cally significant results were not anticipated at this
early stage. In addition to the limited sample size,
the reduced level of expertise within the tested ex-
pert sample (that is more accurately characterized
as a semi-expert group) must be taken into account.
Future investigations may benefit from a follow-up
study involving professional architects with greater
practical experience. We expect that the effects ob-
served in the preliminary present evaluation would
be more pronounced with participants exhibiting a
higher degree of domain-specific expertise.

While the manual pre-processing and annota-
tion of the data were conducted with care, inter-
annotator agreement was not assessed, which may
introduce some degree of variability. Additionally,
the annotation decisions, mirrored in the code and
detailed documentation provided, rely on a specific
theoretical framework, which may not align with
all linguistic traditions. Future work will aim to
expand the dataset substantially and to incorporate
reliability measures to strengthen the generalizabil-
ity and replicability of the findings.
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A Appendix

Metric mean sd min max median
L-sent-count 7.58 3.96 3.0 29.0 7.0
L-tok-per-sent 11.82 2.49 7.17 18.33 11.57
L-dep-dist 2.74 0.36 1.89 3.62 2.77
L-num-clauses 0.26 0.21 0.0 1.0 0.25
L-dep-tree-height 2.62 0.46 2.0 4.67 2.6
L-con-tree-height 7.34 0.66 6.17 10.0 7.17
L-num-phrases 20.97 4.23 13.0 32.33 20.57
E-sent-count 7.48 3.71 3.0 24.0 7.0
E-tok-per-sent 12.53 2.92 7.88 20.0 12.2
E-dep-dist 2.79 0.36 2.1 3.73 2.72
E-num-clauses 0.33 0.26 0.0 1.0 0.27
E-dep-tree-height 2.66 0.35 2.13 4.0 2.6
E-con-tree-height 7.56 0.71 6.38 9.25 7.5
E-num-phrases 22.25 5.08 14.5 36.33 21.25

Table 4: Descriptive values of the syntactic metrics.
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