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Abstract

Human annotations in natural language cor-
pora vary due to differing human perspectives.
This is especially prevalent in subjective tasks.
In these datasets, certain data samples, i.e.
annotatable instances, are more prone to la-
bel variation and can be indicated as ambigu-
ous. This paper investigates methodologies
for quantifying such label ambiguity by lever-
aging uncertainty estimation techniques when
fine-tuning transformer-based models. We con-
ducted experiments on three tasks characterized
by subjective content and inherent label ambi-
guity: classifying sentiment, emotions and hate
speech. The selected datasets include multi-
annotator labels, which we use to derive a label
ambiguity score for each data sample. This
score is the entropy of the empirical probabil-
ity distribution of annotator labels. The results
indicate that uncertainty estimation techniques
can measure label ambiguity to some extent.
Deep Ensembles consistently outperform other
techniques, increasing the correlation coeffi-
cients between model uncertainty and anno-
tator disagreement, but the observed correla-
tions are low. When comparing the annota-
tor label distributions with the predicted class
distributions, we see that Label Smoothing is
able to notably reduce this difference, however
a discrepancy still exists. This suggests that
uncertainty estimation techniques improve the
quantification of label ambiguity, however their
ability remains limited, highlighting the need
for further research 1.

1 Introduction

Natural language processing often relies on anno-
tated corpora. Due to the subjective nature of lan-
guage (Mohammad, 2016), annotation tasks often
involve subjective judgments, where the meaning
of text can be open to multiple interpretations due
to personal perceptions, cultural backgrounds or

1Code available at: https://github.com/halra/raala

Figure 1: Example text snippet for emotion classifica-
tion, showing the diverse emotion labels assigned by a
group of annotators. Given these labels, we calculate
the empirical probability distribution over classes. We
use the characteristics of this distribution to define the
label ambiguity score for the given text snippet.

contextual nuances. This subjectivity leads to label
ambiguity, a phenomenon where different annota-
tors assign different labels to the same piece of text,
reflecting the inherent uncertainty in human lan-
guage understanding (Mostafazadeh Davani et al.,
2022; Khurana et al., 2025). This issue is particu-
larly pronounced in applications requiring nuanced
understanding of human emotions or opinions. For
example, consider a movie review stating:

“The film was surprisingly unconven-
tional and thought-provoking.”

Some annotators might label this as positive due
to its praise of originality, while others might per-
ceive it as negative if they prefer traditional narra-
tives. Such discrepancies highlight the difficulty
in assigning definitive labels to subjective content
(Plank et al., 2014b).

Current models excel in well-defined tasks with
clear, objective labels, such as spam detection,
where the distinction between spam and not-spam
is relatively straightforward. However, they often
underperform in subjective tasks due to their in-
ability to account for label ambiguity (Pavlick and
Kwiatkowski, 2019). These models tend to pro-

https://github.com/halra/raala


vide overconfident predictions even on inherently
ambiguous samples, lacking mechanisms to reflect
uncertainty in their outputs (Guo et al., 2017). This
overconfidence can lead to misguided trust in the
model’s predictions and obscure the identification
of samples, i.e. annotatable items, that require fur-
ther human review or special attention (Zhang and
Yang, 2021).

Furthermore, traditional evaluation metrics and
training methodologies do not address the chal-
lenges posed by label ambiguity sufficiently
(Beigman and Klebanov, 2009). Models are usually
trained to minimize error, based on the assumption
that there is a single correct label for each sample,
which is not always the case in subjective tasks
(Uma et al., 2021). This can result in models that
are ill-equipped to handle the variability present in
real-world data (Aroyo and Welty, 2015).

The core problem addressed in this paper is the
lack of effective methodologies for detecting and
quantifying label ambiguity in text classification
models. Without proper identification and handling
of ambiguous samples, models cannot differenti-
ate between confidently correct predictions and
those that are uncertain due to inherent ambiguity
in the data. This limitation may hinder the develop-
ment of reliable NLP systems capable of managing
the complexities of human language interpretation,
particularly in applications where understanding
nuance and subjectivity is crucial.

To address this problem, the paper investigates
whether techniques for estimating uncertainty in
model predictions can serve as a means to measure
label ambiguity.

Label ambiguity is often demonstrated in
datasets with crowd-sourced annotations, which ex-
hibiti varying degrees of annotator agreement. For
instance, in the GoEmotions dataset — a corpus
for fine-grained emotion classification (Demszky
et al., 2020) — some text samples receive unani-
mous labels, while others have annotations spread
across multiple emotion categories. The variance
in annotations indicates the level of ambiguity for
each sample. Traditional models might still assign
high confidence to a single label, disregarding the
underlying uncertainty reflected in the annotators’
disagreement (Mostafazadeh Davani et al., 2022).

Given many annotators for each sample, we
frame the empirical probability distribution over
classes as a ground truth measure for sample-level
ambiguity, as shown in Figure 1. This allows us
to evaluate how well the sample-level uncertainty

scores from various techniques align with ambi-
guity, by comparing them against the empirical
probability distribution. In an additional ambiguity
detection experiment, we define a threshold and
have the models, equipped with stated uncertainty
estimation techniques, predict which samples are
ambiguous; samples with uncertainty scores within
the threshold are marked as ambiguous.

Our contributions can be summarized as follows:

• We propose an empirical label ambiguity mea-
sure. This includes framing the annotator la-
bel distribution over classes as a ground truth
measure for sample-level ambiguity.

• We evaluate uncertainty estimation techniques
for measuring label ambiguity. These tech-
niques are trained using a single label, and not
a distribution, and we evaluate how well their
output class distributions capture the inherent
label ambiguity. We see that the techniques
successfully improve over the Baseline Soft-
max in quantifying label ambiguity, but their
performance is limited.

• We present an ambiguity detection task and
evaluate the methods. We conduct ex-
periments that classify samples as ambigu-
ous based on defined uncertainty thresholds,
demonstrating modest improvements over
standard fine-tuning and random baselines.

2 Evaluation Data for Label Ambiguity

In this section, we outline the evaluation data and
metrics employed to investigate label ambiguity
in subjective tasks. We utilize publicly available
datasets with inherent annotation ambiguity, each
annotated with multi-annotator labels, described in
Section 2.1. We define the label ambiguity score as
the entropy of the empirical probability distribution
over annotator labels, explained in Section 2.2.

2.1 Datasets
We employ publicly available datasets with multi-
annotator labels, which demonstrate annotator dis-
agreements. In our experiments, we utilize GoE-
motions (Demszky et al., 2020), Rotten Tomatoes
Reviews (Pang and Lee, 2005), and the GAB Hate
Speech Corpus (Kennedy et al., 2020). For each
dataset we used 70% for training, 15% as validation
and 15% as a holdout test set.

Table 1 summarizes the dataset characteristics.
This includes the original characteristics of each



Samples Classes Annotators

GoEmotions orig. 58,009 28 4.3
modif. 23,990 9 2.8

Rotten Tomatoes orig. 4,999 2 5.55
modif. 4,999 2 5.55

GAB Hate Speech orig. 27,665 131 3+
modif. 4,674 2 3.12

Table 1: Overview of the three datasets. The columns
show the total number of samples, number of classes
and average number of annotators per sample.

dataset, as well as the modified ones used in this
paper. Following are the modifications we applied:
GoEmotions: We reduced the label set to 9 pri-
mary emotions: sadness, neutral, love, gratitude,
disapproval, amusement, adminration, annoyance,
approaval. We also removed examples with only
one annotator vote, and balanced the dataset across
classes.
GAB Hate Speech: We consolidated the multi-
ple hate categories into a binary hate label and
balanced the resulting subset. Merging all hate cat-
egories into one class brings more variety into the
hate class, which induces more disagreements than
according to the original label set.

2.2 Label Ambiguity Score

We define the label ambiguity score using empir-
ical probability distributions. These distributions
consist of empirical probabilities for each class
computed using labels from multiple human anno-
tators. The empirical probabilities are computed as
the proportion of annotators who choose that class
relative to the total number of annotators. This dis-
tribution reflects annotator consensus and allows
us to compute the label ambiguity score, given that
ambiguous samples exhibit higher disagreement
among annotators.

We use the entropy of this distribution as a label
ambiguity score, calculated for each dataset exam-
ple. Higher entropy indicates greater disagreement
among annotators and ambiguity, whereas lower
entropy corresponds to stronger consensus.

We analyse the distribution of label ambiguity
scores for each dataset in Figure 2. We can see
that the GoEmotions and Rotten Tomatoes datasets
have wide distributions, with the data samples ex-
hibiting either total agreement (label ambiguity
score close to zero), or different levels of ambi-

2Total number including various types of hate speech.

(a) GoEmotions

(b) Rotten Tomatoes

(c) GAB Hate Speech

Figure 2: Distribution of label ambiguity scores

guity. The high label ambiguity scores in GoEmo-
tions overall, larger than 1, are due to the larger
number of classes, whereas Rotten Tomatoes and
GAB Hate Speech have only two classes. For GAB
Hate Speech, we see a bimodal histogram with
two very narrow peaks, indicating two very distinct
groups of samples - low ambiguity around 0 or high
ambiguity around 0.6.

3 Methods

We describe our methodology for uncertainty es-
timation to assess label ambiguity. Our goal is to
use uncertainty estimation either to directly predict
the label ambiguity score or to approximate the
full label distribution across classes. We detail the
uncertainty estimation techniques employed in Sec-
tion 3.2, and explain how we derive an uncertainty
score from the model outputs in Section 3.3.

3.1 Baseline Softmax and Oracle Softmax
Distribution

First, we will briefly explain the standard fine-
tuning approach for classification, used as a base-



line in our paper.
Baseline Softmax. In this approach, the tar-

get labels used are the majority vote of the multi-
annotator labels. This means that the model is
trained on one-hot encoded labels where each sam-
ple is assigned exactly one class - the most frequent
one of the crowd annotations. The model outputs a
softmax distribution (Bridle, 1990) over the classes,
which can be interpreted as a probability distribu-
tion. This predicted distribution is used to later
calculate the uncertainty score.

Additionally, we include another standard ap-
proach, that is common when dealing with multi-
annotator datasets (Plank et al., 2014a).

Oracle Softmax. Instead of the majority vote,
this approach uses soft training labels, obtained
from the full distribution of annotations. The fre-
quency of annotator votes for each class is used as
a corresponding soft label. This represents an ideal
scenario where the distribution of human annotator
labels for the training samples is known. Again,
the softmax distribution is used to calculate the
uncertainty score.

The goal of this paper is to measure label ambi-
guity when annotator distributions are in fact not
available and all of our evaluated approaches train
with a single label for each sample. This makes the
Oracle Softmax approach infeasible, however we
include it as an upper performance bound, because
it could inform us on the potential of ambiguity
quantification when richer labels are available.

3.2 Uncertainty Estimation Techniques
We focus on three techniques: Monte Carlo
Dropout, Deep Ensembles and Label Smoothing.
These techniques all involve fine-tuning models
for classification, using the majority vote of the
multi-annotator labels and no additional informa-
tion about the annotator distribution.

Deep Ensemble (DE) involves training multiple
neural networks independently, each initialized dif-
ferently (Lakshminarayanan et al., 2017). In our
case, we use multiple instances of the same model
architecture, which are just multiple instances of
the previously explained Baseline Softmax. Each of
these models outputs a predicted distribution over
classes. We use the average of these distributions
to calculate the uncertainty score.

Monte Carlo Dropout (MCD) is a method used
for estimating uncertainty in neural network predic-
tions (Gal and Ghahramani, 2016). By randomly
disabling neurons during inference, it provides mul-

tiple stochastic predictions that help measure model
uncertainty. We use the average of these predicted
distributions to calculate the uncertainty score.

Label Smoothing (LS) is a technique that mod-
ifies the target labels to reduce model overconfi-
dence by assigning soft probabilities to non-target
labels (Szegedy et al., 2015). Instead of using hard
one-hot encoded labels, we uniformly distribute a
fraction of the label probability mass across other
classes which helps mitigate overfitting. Similar to
the other methods, the output softmax distribution
is used to calculate the uncertainty score.

3.3 Uncertainty Score

Each uncertainty estimation technique outputs a
predicted probability distribution over the classes.
Given this probability distribution, we calculate its
entropy as an uncertainty score. Entropy quanti-
fies the amount of uncertainty or randomness in a
probability distribution (Namdari and Li, 2019).

In addition to the entropy, we can calculate
other uncertainty metrics, such as variance and the
Jensen-Shannon divergence (JSD). We initially ex-
perimented with all three of them, however our
results showed that they perform very similarly.
The comparison of the three uncertainty metrics
for the task of ambiguity detection can be found in
Appendix A. Due to this, we only use entropy in
the remainder of this paper.

4 Experiment: Measuring Label
Ambiguity

In the first experiment, we evaluate the effective-
ness of the uncertainty estimation techniques in
measuring label ambiguity. Here, we compare how
correlated the ambiguity and uncertainty scores are,
as well as how close the empirical and predicted
distributions are.

4.1 Experimental Setup

We compare the three uncertainty estimation tech-
niques (Section 3.2) with the Baseline Softmax and
Oracle Softmax fine-tuning. We perform the exper-
iment using three datasets, listed in Section 2.1.

We selected well-known models that have con-
sistently demonstrated robust performance across
natural language processing tasks. Namely BERT
(Devlin et al., 2019), RoBERTa (Liu et al., 2019)
and XLNet (Yang et al., 2020). Table 2 provides
a high-level overview of the key specifications for
BERT, RoBERTa, and XLNet. Despite differences



in training strategies and data volumes, all three
models share a transformer-based architecture. By
employing three different models we can verify the
generalizability of our findings.

BERT RoBERTa XLNet

Vocab. size 30,522 50,265 32,000
Max. seq. length 512 512 512
Training data 16GB 160GB+ 158GB+
Pre-train object. MLM, NSP MLM Permut. LM

Table 2: Comparison of Architectural Specifications

All experiments were ran for 3 random seeds and
tables show the mean scores and standard devia-
tions. Further implementation details can be found
in Appendix C.

We calculate multiple metrics to evaluate how
well the techniques measure ambiguity. To com-
pare the scores themselves, we calculate the Pear-
son correlation coefficient between the predictive
entropies (uncertainty scores) and the empirical
entropies (label ambiguity scores). A high corre-
lation indicates that the model’s uncertainty esti-
mates align with human perceptions of ambiguity,
suggesting that the model can effectively identify
ambiguous samples.

To compare the empirical and predicted distri-
butions directly, we calculate the Jensen-Shannon
divergence (JSD), Kullback–Leibler divergence
(KLD) and mean squared error - averaged over
all classes (MSE). With this, for each sample, we
evaluate how close the distribution of predicted
class probabilities is to the empirical distribution of
the annotator labels. These metrics are calculated
for each sample independently, and then averaged
over samples.

4.2 Results - Baseline Softmax
The classification metrics for the Baseline Soft-
max model can be found in Appendix B. We see
that the three tasks have different difficulty levels.
The F1 score for sentiment classification (Rotten
Tomatoes) is the highest - 0.87, followed by hate
speech classification (GAB Hate Speech) with 0.77
and emotion classification (GoEmotions) with 0.64.
Additionally, we see that the scores on each dataset
are consistent across the three transformer models.

Additionally, we compare the most common
cases of disagreements in the models’ predictions
and the human annotations. On the GoEmotions
dataset we compare the classifier’s confusion ma-
trix with human annotation co-occurence counts.

Half of the ten most frequent pairs neutral ↔ ap-
proval, neutral ↔ disapproval, neutral ↔ sadness,
and annoyance ↔ disapproval appear in both rank-
ings, giving a 50% overlap. This shows that the
models often make prediction mistakes exactly
where annotators tend to attribute multiple emo-
tions, which means these mistakes can be attributed
to annotator disagreement and label variation. On
another hand, the remaining pairs in Table 3a) are
class distinctions genuinely difficult for the model.

The complete confusion and co-occurrence heat-
maps are shown in Figure 6 in Appendix E.

4.3 Results - Measuring Label Ambiguity
Table 4 shows our aggregated results—averaged
over the three model architectures.

As expected, Oracle Softmax has the highest cor-
relation and lowest JSD, KLD and MSE out of all
the methods. The average correlations for Oracle
Softmax are in the range 0.290 - 0.375 across all
datasets and models, indicating moderate correla-
tion (Hopkins, 2000). This is expected, since it
incorporates annotator distribution information dur-
ing training, while the other techniques do not. A
minor exception is the GoEmotions dataset, where
even though the Oracle Softmax method achieves
the lowest MSE and highest correlation, its rela-
tively higher JSD and KLD suggest that, while it
minimizes squared differences, it does not fully
capture the distribution. One reason for this could
be the larger number of classes in GoEmotions,
compared to the other two datasets.

In all cases, all uncertainty estimation techniques
improve over Baseline Softmax. The Deep Ensem-
ble technique achieves the highest mean correlation
coefficients of 0.218 and 0.212 for GoEmotions
and Rotten Tomatoes. Monte Carlo Dropout also
shows substantial improvement, with average cor-
relations of 0.216 and 0.167 for GoEmotions and
Rotten Tomatoes.

On the GAB Hate Corpus, we generally observe
much lower correlations than for the other two
datasets. One potential reason for this could be the
very narrow peaks in the histogram of this dataset
(see Figure 2) when compared to the other two,
which means that this dataset includes a very lim-
ited variety of label ambiguity scores. Addition-
ally, for this dataset we applied the most significant
modification, which was changing the target into
binary classification (hate or no hate), by merging
all various hate classes into one.

Overall, our results suggest that using uncer-



Rank Pair Count

1 neutral ↔ approval 74
2 annoyance ↔ disapproval 62
3 approval ↔ neutral 56
4 neutral ↔ disapproval 55
5 annoyance ↔ neutral 47
6 neutral ↔ annoyance 47
7 disapproval ↔ neutral 46
8 approval ↔ admiration 45
9 neutral ↔ sadness 41

10 disapproval ↔ annoyance 38

(a) Classifier confusion pairs.

Rank Pair Count

1 neutral ↔ approval 226
2 approval ↔ neutral 226
3 sadness ↔ neutral 159
4 neutral ↔ sadness 159
5 neutral ↔ disapproval 151
6 disapproval ↔ neutral 151
7 annoyance ↔ neutral 143
8 neutral ↔ annoyance 143
9 annoyance ↔ disapproval 116

10 disapproval ↔ annoyance 116

(b) Human co-occurrence pairs.

Table 3: Most frequent emotion pairs in the misclassifications of the baseline classifier (left) and in the human
co-annotations (right) on the 9-class GoEmotions dataset.

tainty scores derived from uncertainty estimation
techniques, particularly Deep Ensembles and MC
Dropout, enhance the model’s ability to detect am-
biguous samples. However, it is important to note
that the correlation coefficients between the uncer-
tainty and ambiguity scores are low, with values
close to 0.2, indicating that while there is a posi-
tive relationship, it is small (Hopkins, 2000). This
suggests that the techniques’ ability to detect ambi-
guity is limited and there is room for improvement.

When comparing the distributions, Label
Smoothing significantly reduces the discrepancy
between the predicted and annotator distributions,
much better than Deep Ensemble and Monte Carlo
Dropout. This is opposite from the correlation anal-
ysis, where in terms of overall correlation of en-
tropies, Label Smoothing scores much lower than
the other methods. With this, we see that training
with soft labels significantly improves the predicted
class distributions and makes them more ambiguity-
aware, even when the soft labels are only in the
form of a uniform smoothing factor.

Figure 3 showcases the improvement the Deep
Ensemble brings over the Baseline Softmax, by vi-
sualizing the correlation across all data samples
on the GoEmotions dataset. The scatter plots
show that the Deep Ensemble technique results
in a stronger positive correlation, with data points
more closely following an upward trend compared
to the baseline. This highlights the finding that the
uncertainty score derived from ensembles of mod-
els improves the measuring of label ambiguity, as
opposed to using a single model.

As an additional insight, for BERT on Rotten
Tomatoes we selected the top-100 most-uncertain
sentences for MC Dropout, Deep Ensemble, and
Label-Smoothing. Eighteen sentences (18 %) occur

(a) Baseline: Correlation 0.095

(b) Deep Ensemble: Correlation 0.226

Figure 3: Correlation between label ambiguity scores
and uncertainty scores across all data samples. Results
for the GoEmotions dataset using XLNet.

in all three lists, and the pair-wise Jaccard overlaps
average 0.24±0.01. Across the entire score vectors
the mean Spearman correlation is 0.50±0.20 (after
aligning on common IDs). Each estimator nonethe-
less brings novel evidence: 39%, 43%, and 40%
of their respective top-100 sentences are unique to
MC, Smoothing, and DE.

5 Experiment: Detecting Ambiguous
Samples

This experiment demonstrates our methodology
for detecting ambiguous samples in text classifica-
tion using model uncertainty estimates. We apply
percentile-based thresholds and flag samples that
exceed these thresholds. With this, we assess the
overlap between model-identified and annotator-
identified ambiguous samples and evaluate how



Distribution Ambiguity Score
Dataset Technique Mean JSD ↓ Mean KLD ↓ Mean MSE ↓ Correlation ↑ % Improv. ↑

GoEmotions

Baseline Softmax 0.342 ± 0.005 5.303 ± 0.440 0.0608 ± 0.0009 0.084 ± 0.007 -
Deep Ensemble 0.285 ± 0.002 3.271 ± 0.050 0.0443 ± 0.0003 0.218 ± 0.007 163%
MC Dropout 0.294 ± 0.002 2.799 ± 0.039 0.0478 ± 0.0003 0.216 ± 0.003 161%
Label Smoothing 0.340 ± 0.002 1.115 ± 0.007 0.0407 ± 0.0004 0.155 ± 0.012 87%

Oracle Softmax 0.382 ± 0.006 1.489 ± 0.042 0.0125 ± 0.0003 0.375 ± 0.009 354%

Rotten Tomatoes

Baseline Softmax 0.150 ± 0.002 2.662 ± 0.102 0.1174 ± 0.0027 0.081 ± 0.015 -
Deep Ensemble 0.115 ± 0.002 1.788 ± 0.051 0.0880 ± 0.0017 0.212 ± 0.009 174%
MC Dropout 0.125 ± 0.005 1.754 ± 0.093 0.0989 ± 0.0045 0.167 ± 0.020 122%
Label Smoothing 0.084 ± 0.003 0.245 ± 0.009 0.0745 ± 0.0033 0.135 ± 0.010 78%

Oracle Softmax 0.070 ± 0.003 0.208 ± 0.013 0.0543 ± 0.0024 0.290 ± 0.020 279%

GAB Hate Speech

Baseline Softmax 0.208 ± 0.003 3.262 ± 0.224 0.1794 ± 0.0032 0.036 ± 0.043 -
Deep Ensemble 0.165 ± 0.002 1.922 ± 0.078 0.1390 ± 0.0019 0.073 ± 0.013 185%
MC Dropout 0.176 ± 0.004 1.970 ± 0.107 0.1536 ± 0.0036 0.084 ± 0.033 173%
Label Smoothing 0.132 ± 0.003 0.381 ± 0.009 0.1205 ± 0.0039 0.046 ± 0.033 65%

Oracle Softmax 0.104 ± 0.010 0.355 ± 0.048 0.0916 ± 0.0109 0.375 ± 0.031 1075%

Table 4: Evaluation of the experiment of measuring label ambiguity. Three distribution metrics: Jensen-Shannon
divergence (JSD), Kullback–Leibler divergence (KLD) and mean squared error (MSE) are shown. The Pearson cor-
relation coefficients of the uncertainty and ambiguity scores are also shown, together with percentage improvement
over the Baseline Softmax (%Improv.), in terms of the correlations. The scores are averaged over all test set samples,
and then averaged over the three models. The table shows mean ± std., where the standard deviation is calculated
over the models. In each column, the best scores are bolded, and the second-best are underlined.

Metric Value

Common to all three 18 / 100 (18%)
Mean Jaccard 0.24± 0.01
Mean Spearman ρ 0.50± 0.20
Unique to MC Dropout 39 %
Unique to Label Smoothing 43 %
Unique to Deep Ensemble 40 %

Table 5: Overlap statistics for the top–100 most-
uncertain Rotten-Tomatoes items.

well our model-derived uncertainty works for de-
tecting human ambiguity.

The first experiment, gives us correlation coef-
ficients which are positive, but low. This does not
tell us what these values imply for the practical use
of these methods. With this second experiment, we
hope to get better insights into whether these cor-
relation values are sufficient to guide downstream
filtering of ambiguous samples.

5.1 Task Setup

With this experiment, we transform the task into a
binary classification task, where the two classes are
ambiguous and non-ambiguous. We refer to this
setup as ambiguity detection. We assign ground
truth labels based on the label ambiguity scores. A

sample is labeled as ambiguous if its label ambigu-
ity score exceeds a pre-defined threshold.

We set this threshold dynamically, to always
match the 60th percentile of the ambiguity scores.
We chose this threshold as it has been adopted in
some prior works with limited backing (Dumitra-
che et al., 2015). Intuitively, in Figure 2, we see
that applying a dataset-specific threshold using the
60th percentile, would result in a large number of
samples flagged as ambiguous. This is confirmed
in Table 6, where we see that the shares of ambigu-
ous samples are close to 50%3. In other words, we
flag as ambiguous almost all samples that do not
have perfect agreement among the annotators.

This is one way to separate samples into two
classes according to their annotator agreement
scores. In reality, determining this threshold and
defining the difference between ambiguous and
non-ambiguous samples is a very significant ques-
tion, but also challenging to answer and out of the
scope of this paper.

During inference, we apply the same type of
thresholding using the 60th percentile to the model-

3The 60th percentile threshold implies that 40% of the
samples will be flagged. However, with 2–5 annotators per
item, ambiguity scores are limited to a few possible values.
For some datasets, like GAB Hate Speech, this includes a lot
of ties, which raises the ambiguous shares to over 40%, but
avoids arbitrarily splitting items with identical agreement.



derived uncertainty scores. This determines the
predicted label for each sample: if the uncertainty
score is above the threshold the sample is predicted
as ambiguous.

5.2 Random Baseline
For this task, we also include a random baseline
in the evaluations. Here, instead of calculating an
uncertainty score, we randomly generate a number
between 0 and 1 for each sample. Then, on these
random scores we apply the same threshold as ex-
plained in the previous section: if the random score
is above the threshold the sample is predicted as
ambiguous. This helps us assess the practical effec-
tiveness of the uncertainty techniques in detecting
ambiguous samples.4

5.3 Results
The main results of this experiment, in terms of
error rates, are shown in Table 6. We can see that
all methods consistently outperform the Random
baseline, which has error rates of around 50%. This
indicates that all methods are helpful in flagging
ambiguous samples.

Out of the techniques, and consistent with our
previous experiments, Deep Ensemble achieved the
lowest error rates, with average of 41.19%. No-
tably, these rates are promising when compared to
a Random Baseline, indicating that our techniques
capture meaningful predictive information. We ob-
tained comparable scores across the three datasets.
On the GoEmotions dataset, all three techniques
outperformed the Baseline Softmax, whereas on the
Rotten Tomatoes and GAB Hate Speech datasets,
Label Smoothing and Monte Carlo Dropout per-
formed worse than the Baseline Softmax. The Ora-
cle Softmax approach again provided an advantage
by reducing the average error rate to around 37%.

In Figure 4, we present the ROC curves of the
ambiguity detection task. The ROC curves illus-
trate the trade-off between the true positive rate and
the false positive rate at various threshold settings.

Out of the methods, the Deep Ensemble exhibits
the highest area under the curve (AUC) of 0.61, in-
dicating the best overall performance where Monte
Carlo Dropout performs slightly below Deep En-
semble but still surpasses the Baseline Softmax and

4An alternative random baseline is to always output the
majority class (non-ambiguous). This will result in error rates
equal to the share of ambiguous samples, which are sometimes
better than the random baseline we use. However, this would
also give us a zero precision and recall scores of the class of
interest, making it unusable for this task.

Figure 4: ROC curves for ambiguity detection, on the
GoEmotions dataset with RoBERTa. Each sample is
annotated as ambiguous if the empirical entropy (label
ambiguity score) is over 60% of the maximum value.

Label Smoothing techniques. All four methods
outperform the Random baseline.

These results are consistent with our previous
analysis, reinforcing the conclusion that the Deep
Ensemble technique is more adept at capturing la-
bel ambiguity.

6 Related Work

There have been numerous studies addressing hu-
man label variation and label ambiguity. Snow et al.
(2008) highlighted the variability in annotations ob-
tained from non-expert annotators and the impact
of this variability on NLP tasks. They demonstrated
that aggregating multiple annotations can improve
the quality of labels.

Another study proposed leveraging annotator
disagreement instead of resolving it, suggesting
that disagreement can provide valuable informa-
tion.They advocated for models that learn from
soft labels reflecting annotator probabilities rather
than hard labels (Plank et al., 2014a). We include
this as our Oracle Softmax approach.

Uncertainty estimation techniques have gained
attention as a means to quantify model confidence
(Gal and Ghahramani, 2016; Lakshminarayanan
et al., 2017). In the context of deep learning, meth-
ods such as Monte Carlo Dropout (Gal and Ghahra-
mani, 2016) approximate Bayesian inference by
performing dropout at inference time, enabling
models to estimate predictive uncertainty. Simi-
larly, Deep Ensembles (Gal and Ghahramani, 2016)
improve uncertainty estimation by training multiple
models with different initializations and aggregat-



GoEmotions Rotten Tomatoes GAB Hate Speech Average

%Ambiguous 53.81 42.80 45.93 -

Error Rate (%)
Random 51.52 ± 0.61 52.34 ± 0.77 50.21 ± 0.25 51.36

Baseline Softmax 45.01 ± 1.75 41.64 ± 1.23 44.13 ± 2.84 43.59
Deep Ensemble 40.90 ± 0.29 39.75 ± 0.57 42.91 ± 3.57 41.19
Monte Carlo Dropout 40.73 ± 0.37 42.79 ± 0.68 45.76 ± 2.91 43.09
Label Smoothing 42.83 ± 0.68 45.73 ± 1.78 47.99 ± 2.95 46.18

Oracle Softmax 37.62 ± 0.49 37.13 ± 1.10 37.39 ± 1.09 37.38

Table 6: Ambiguity rates and error rates (mean ± std) for ambiguity detection. The results are averaged over the
three models. In each column, the best scores are bolded, and the second-best are underlined.

ing their predictions.
These techniques have shown effectiveness in

improving model calibration and detecting out-
of-distribution samples. Bley et al. (2024) evalu-
ated various uncertainty estimation methods under
dataset shift and found that ensembles generally
provide better calibration and uncertainty estimates
compared to single models.

Malinin and Gales (2018) introduced Prior Net-
works to model predictive uncertainty, distinguish-
ing between data uncertainty and model uncertainty
in text classification tasks.

Recent research has begun to explore the rela-
tionship between model uncertainty and label ambi-
guity. Braiek and Khomh (2024) studied how incor-
porating human-like uncertainty into models can
improve robustness in image classification tasks.
They showed that models trained with uncertain
labels can better handle ambiguous inputs.

Despite these advancements, there is limited
work specifically focusing on leveraging uncer-
tainty estimation techniques to detect label ambi-
guity arising from annotator disagreement in sub-
jective text classification.

7 Conclusion

In this paper, we focused on three subjective tasks
of great interest: sentiment, emotion, and hate
speech classification. For each task, we used pub-
lic datasets with published multi-annotator labels.
For every sample in these datasets, we defined a
label ambiguity score as the entropy of the annota-
tor label distribution, which measures the inherent
randomness in the labeling process.

We assessed the effectiveness of uncertainty es-
timation in quantifying label ambiguity. Our eval-
uation included three techniques—Deep Ensem-
ble, Monte Carlo Dropout, and Label Smooth-
ing—which we compared with both a Baseline

Softmax model and an Oracle Softmax approach,
the latter serving as an upper performance bound.
For each method, we computed an uncertainty
score defined as the entropy of the predicted la-
bel distribution.

First, we evaluated whether predictive uncer-
tainty techniques could effectively capture label
ambiguity by calculating the correlation between
uncertainty scores and label ambiguity scores. Our
findings indicate that these techniques—most no-
tably Deep Ensembles—outperform the Baseline
Softmax approach, with both Deep Ensembles and
Monte Carlo Dropout showing a low positive cor-
relation with label ambiguity. Additionally, we
assessed the alignment between predicted class dis-
tributions and annotator class distributions. Here,
the Label Smoothing approach was successful in
reducing the discrepancy between the distributions,
making the predictions more ambiguity-aware.

Next, we applied the uncertainty estimation tech-
niques to an ambiguity detection task, classifying
each sample as either ambiguous or non-ambiguous
using a fixed threshold. Under these conditions, the
Deep Ensemble approach achieved an error rate of
about 40%, reducing it when compared to the Base-
line Softmax approach.

Our results indicate that when fully leveraging
annotator labels, as in the Oracle Softmax fine-
tuning, the models’ ability to quantify ambiguity
improves, but the performance improvements re-
main modest. Although the current uncertainty
estimation techniques do not perfectly capture all
aspects of label ambiguity, the findings are promis-
ing and indicate further research in this direction
is needed. We believe this paper can provide a
foundation for future research into more robust and
effective methods for quantifying label ambiguity.



Limitations

Several limitations of our study should be acknowl-
edged. First, our experiments were primarily con-
ducted on the GoEmotions, Rotten Tomatoes and
GAB Hate Corpus datasets, which, while exten-
sive and diverse, may not capture all nuances of
subjective expressions across different cultures, lan-
guages or contexts.

Second, uncertainty estimation techniques like
Deep Ensembles require training multiple models,
increasing computational complexity and resource
requirements. This may limit their practicality in
environments with constrained resources or real-
time processing needs. While uncertainty estima-
tion techniques provide valuable information about
model confidence, interpreting these estimates in a
meaningful way for end-users remains a challenge.

And third, we focus on single-label classification
which has inherent limitations as opposed to multi-
label classification and may not be the most suitable
for tasks such as emotion classification.
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Figure 5: XLNet with GoEmotions ROC/AUC

Model Dataset Precision Recall F1 Score Accuracy

RoBERTa
Rotten Tomatoes 0.87 0.87 0.87 0.87
GoEmotions 0.64 0.64 0.64 0.64
GAB Hate Corpus 0.78 0.78 0.78 0.78

BERT
Rotten Tomatoes 0.85 0.85 0.85 0.85
GoEmotions 0.64 0.65 0.64 0.65
GAB Hate Corpus 0.77 0.77 0.77 0.77

XLNet
Rotten Tomatoes 0.88 0.87 0.87 0.87
GoEmotions 0.64 0.64 0.64 0.64
GAB Hate Corpus 0.77 0.77 0.77 0.77

Table 7: Classification Metrics for the Baseline Softmax Models



• Dropout Rate: 0.1

Specific parameters for each uncertainty estima-
tion technique were:

• Monte Carlo Dropout:

– Number of Stochastic Forward Passes
during inference: 100

– Dropout enabled during inference
– Dropout during inference: 0.5

• Deep Ensembles:

– Ensemble Size: 5 models
– Different random seeds and epochs for

each ensemble member

• Label Smoothing:

– Smoothing Factor: ϵ = 0.3

We split each dataset into training, validation and
test sets using a 70/15/15 stratified split to maintain
class distribution.

D Correlation between Ambiguity and
Uncertainty Scores

Table 8 shows the correlation coefficients and per-
centage improvement over baseline, averaged over
all data samples. The rightmost column shows the
average correlation over the 3 datasets.

As expected, Oracle Softmax has the highest
correlation out of all the methods, with average
correlations around 0.35 across all datasets and
models, indicating moderate correlation (Hopkins,
2000).

In most cases, all uncertainty estimation tech-
niques improve over Baseline Softmax. The Deep
Ensemble technique achieves the highest mean cor-
relation coefficients ranging between 0.204 and
0.226 for GoEmotions and RottenTomatoes, across
the three models. Monte Carlo Dropout also shows
substantial improvement, with correlations rang-
ing between 0.126 and 0.229 for GoEmotions and
RottenTomatoes across models.

On the GAB Hate Corpus, especially in combi-
nation with XLNet the results do not align with the
patterns observed in the other datasets and models.
For this dataset, we even see lower correlations than
the baseline, when using Monte Carlo Dropout and
Label Smoothing.

E Class-Level Analysis - Heatmaps

Figure 6 shows the heatmaps comparing the dis-
agreements in the model (baseline BERT) and in
human annotations.



GoEmotions Rotten Tomatoes GAB Hate Speech Average
Model Method Corr. % Improv. Corr. % Improv. Corr. % Improv. Corr.

BERT

Baseli. 0.081 ± 0.002 - 0.101 ± 0.009 - 0.024 ± 0.042 - 0.069
DE 0.204 ± 0.008 152% 0.207 ± 0.004 105% 0.078 ± 0.016 225% 0.163
MCD 0.196 ± 0.003 142% 0.126 ± 0.030 25% 0.087 ± 0.031 262% 0.136
LS 0.141 ± 0.011 74% 0.123 ± 0.013 22% 0.070 ± 0.038 192% 0.111

Oracle 0.372 ± 0.013 359% 0.264 ± 0.012 161% 0.399 ± 0.014 1562% 0.345

RoBERTa

Baseli. 0.075 ± 0.007 - 0.083 ± 0.009 - 0.031 ± 0.037 - 0.063
DE 0.224 ± 0.005 199% 0.224 ± 0.013 170% 0.076 ± 0.009 145% 0.175
MCD 0.229 ± 0.006 205% 0.191 ± 0.024 130% 0.112 ± 0.039 261% 0.177
LS 0.169 ± 0.019 125% 0.131 ± 0.009 58% 0.056 ± 0.041 81% 0.119

Oracle 0.383 ± 0.008 411% 0.303 ± 0.030 265% 0.379 ± 0.010 1123% 0.355

XLNet

Baseli. 0.095 ± 0.011 - 0.059 ± 0.028 - 0.054 ± 0.049 - 0.069
DE 0.226 ± 0.008 138% 0.204 ± 0.010 246% 0.065 ± 0.013 20% 0.165
MCD 0.223 ± 0.001 135% 0.183 ± 0.005 210% 0.052 ± 0.029 -4% 0.153
LS 0.155 ± 0.007 63% 0.150 ± 0.009 154% 0.012 ± 0.020 -78% 0.106

Oracle 0.371 ± 0.006 291% 0.302 ± 0.019 412% 0.346 ± 0.069 541% 0.340

Table 8: Correlation coefficients (mean ± std.) and percentage improvement over Baseline for each model. In each
column, per model, the best scores are bolded, and the second-best are underlined.

Figure 6: Heat-maps of model confusions (left) and human co-occurrences (right) on GoEmotions.
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