
A GitHub-based Workflow for Annotated Resource Development

Brandon Waldon Nathan Schneider
Georgetown University

{bw686, nathan.schneider}@georgetown.edu

Abstract

Computational linguists have long recognized
the value of version control systems such as Git
(and related platforms, e.g., GitHub) when it
comes to managing and distributing computer
code. However, the benefits of version con-
trol remain under-explored for a central activity
within computational linguistics: the develop-
ment of annotated natural language resources.
We argue that researchers can employ version
control practices to make development work-
flows more transparent, efficient, consistent,
and participatory. We report a proof-of-concept,
GitHub-based solution which facilitated the cre-
ation of a legal English treebank.

1 Introduction

Linguistic annotation is an important pillar of the
empirical enterprise that supports modern compu-
tational linguistics. A recent review notes that "cor-
pus resources... remain highly relevant for testing
and studying [NLP] systems" (Opitz et al., 2025:
4), even as these resources take a less central role
in system training. By augmenting corpus data
with high-quality annotations, "people skilled at
language analysis can ensure meaningful evalua-
tion of NLP systems" (ibid).

However, creating a valuable annotated dataset
is time-consuming and labor-intensive, and some
common practices can undermine the usefulness
and quality of the end result. For example, behind
each "gold" annotation may be several non-trivial
analytical decisions reached through careful adju-
dication. Unfortunately, researchers tend not to
make, or publicly share, detailed records of these
processes. As a result of low project transparency,
dataset users may have no way of determining the
original justification for a given annotation.

Moreover, linguistic annotation practices tend
to vary widely in terms of the assistive tools made
available to annotators. Providing annotators with
access to tools that automatically visualize and/or

validate annotations can facilitate more efficient
and more consistent (i.e., less error-prone) re-
source development (Bontcheva et al., 2010; Stene-
torp et al., 2012). However, there are high overhead
costs for creating such tools from scratch, meaning
that less mature annotation projects are often pur-
sued with more primitive annotation technologies.

Finally, not all workflows permit the kinds of ro-
bust community participation that help to sustain
linguistic annotation projects over time. Though
most projects are sustained primarily by the efforts
of a core development team, outside researchers
can make valuable contributions by identifying an-
notation errors or adding new annotations. To make
full use of these non-core contributors, it is desir-
able to develop resources on platforms that facili-
tate open communication between a project’s core
developers and the broader research community.

We argue that researchers can address these is-
sues with resource development workflows that
employ version control systems (such as Git) and
online services for interacting with such systems
(such as GitHub). Though computational linguists
have long recognized the value of version control
for managing and distributing computer code, we
demonstrate that version control systems and ser-
vices also serve to make linguistic annotation pro-
cedures more transparent, efficient, consistent,
and participatory.

In what follows, we recap the core principles
behind version control generally and Git/GitHub in
particular. We then present our GitHub-based anno-
tation workflow in general form. Next, we report a
proof-of-concept implementation, which facilitated
the creation of a treebank of legal English.

2 Version control and Git/GitHub

In this section, we briefly review the concept of a
version control system (VCS) and the core princi-
ples underlying Git/GitHub, with a focus on prop-

1

mailto:bw686@georgetown.edu
mailto:nathan.schneider@georgetown.edu

erties that facilitate our proposed workflow.
A VCS records changes to a file repository over

time, allowing teams to track modifications, com-
pare versions, and revert to previous states when
needed. VCS adoption enables developers to cre-
ate and modify files while maintaining a complete
project history within the repository.

Git is a widely employed VCS. A Git branch is
a parallel instance of the repository with a change
history that may diverge from that of the central
version of the project (as reflected by the ‘main’
branch). Branches allow project contributors to
develop new features or fixes without affecting the
main codebase before the changes are ready to
be integrated. A Git commit records the changes
made to repository files at a specific point in time.
Each commit contains a unique hash identifier and
includes a message describing the changes made.
Commits create a traceable history of modifica-
tions, allowing viewers to understand when and
why particular changes were implemented.

GitHub is a web-based hosting service for man-
aging and sharing Git projects. While Git pro-
vides the foundational version control capabilities,
GitHub extends these with a social platform that en-
ables web-based collaboration. On GitHub, pull re-
quests enable developers to propose changes from
their working branch to the main branch. Pull re-
quests serve as a collaborative space where team
members can review file changes, provide feed-
back, and discuss modifications before changes are
merged from a working branch to the main branch.
GitHub actions specify automated procedures trig-
gered by repository events (such as commits or
pull requests). Actions serve to automate repetitive
tasks such as testing code or writing files.

3 Application to linguistic annotation

Notably, GitHub has already proven to be valu-
able for large-scale linguistic annotation projects
such as Universal Dependencies (de Marneffe et al.,
2021), which employs GitHub as a forum for dis-
cussing annotation guidelines and as a tool for
maintaining existing datasets.1 Our proposed work-
flow goes a step further by integrating GitHub di-
rectly at the resource development stage. This level
of integration results in a comprehensive record of
annotation decisions (and annotator discussions)
for each individual annotation in the dataset.

1https://github.com/universaldependencies

This workflow (Figure 1) starts with two concep-
tual roles performed by project participants: the
annotator role and the manager role.2 The man-
ager organizes the annotation project by populating
a subdirectory of the repository with “stub" en-
tries. These entries include pre-annotated text, pos-
sibly with some pre-processing (e.g., tokenization).
These entries, and/or their associated filenames,
may also include project-relevant metadata.

From the main GitHub branch where stub entries
reside, the annotator creates a working branch.3

Within this working branch, the annotator com-
pletes stub entries, adding annotations according
to the project guidelines. Each time an annota-
tor commits changes to their working branch, two
GitHub actions are automatically triggered: a visu-
alization action and a validation action. The visual-
ization action creates a graphical representation of
the annotated data and commits it to the annotator’s
branch. The validation action triggers a script that
heuristically verifies that the annotation conforms
to conventions of the annotation schema.

When an annotator completes their annotations,
they initiate a pull request to merge their changes
back into the main branch. The manager reviews
the pull request. This review is facilitated by the
action-generated graphical representation, which
enables the manager to inspect the proposed contri-
bution without having to manually read through the
raw text of the annotation file. The manager and an-
notator can also review the output of the validation
action to ensure the annotation is well-formed.

The manager and annotator can discuss the pro-
posed contributions by leaving comments on the
pull request. Ultimately, the manager has two op-
tions: approve the changes and merge them into the
main branch, or request additional edits from the
annotator. In the latter case, the annotator makes
edits on the annotator branch and then requests a
subsequent review from the manager.

Upon successful merging of annotated entries
into the main branch, a statistics action is auto-

2A single individual may perform multiple roles, and the
tasks of a single role may be delegated to multiple individuals.

3Because the manager adds stub files directly to the main
branch, that branch will consist of both incomplete and com-
plete files until all annotations are merged. This creates minor
inconveniences for data browsing and statistics collection. On
an alternative implementation, the manager is tasked with
creating each stub file on a dedicated branch, immediately
opening a draft pull request assigned to the annotator. This
modified approach would maintain a cleaner main branch con-
taining only completed annotations; it would also eliminate
the need for external assignment tracking.

2

https://github.com/universaldependencies

Figure 1: Workflow schema. Blue text indicates manager tasks; green text indicates annotator tasks.

matically triggered. This process updates project
statistics, which may include information about
overall project progress or summary statistics of
the annotations themselves.

In what follows, we show that this workflow can
be implemented in a way that promotes the four
values presented in Section 1: transparency, con-
sistency, efficiency and community participation.

4 Demonstration: treebanking

We applied this workflow while developing a tree-
bank of legal US English in CGELBank (Reynolds
et al., 2023), a treebanking formalism that extends
the descriptive theory of English syntax presented
in the Cambridge Grammar of the English Lan-
guage (CGEL, Huddleston and Pullum, 2002).

The core team consisted of five researchers.
Each team member performed the tasks of the anno-
tator role, while the tasks of the manager role were
performed primarily by the two senior members
of the team. One member working in the manager
role populated the main branch with stub files in
the project-native .cgel data format (Figure 2; see
Reynolds et al. 2023, Sec. 5 for more discussion),
with each file corresponding to one sentence of the
treebank. In addition to the raw sentence text and
other relevant metadata, each stub file contained an
automated tokenization of the sentence.

The annotated sentences were sourced from US
federal statutes as compiled in the US Code by
the Office of the Law Revision Counsel (OLRC)
of the US House of Representatives.4 The OLRC
publishes the US Code in XML format according
to a standardized schema known as United States
Legislative Markup (USLM). Each sentence of the

4https://uscode.house.gov/

sent_id = ...
text = the Attorney General
sent = the Attorney General
(NP

:Det (DP
:Head (D :t "the"))

:Head (Nom
:Head (N :t "Attorney")
:Mod (AdjP

:Head (Adj :t "General"))))

Figure 2: Example of the .cgel data format, illustrat-
ing analysis of the noun phrase the attorney general.

treebank is associated with an ID derived from
unique USLM metadata associated with the parent
element of the sentence. For ease of browsing and
cross-referencing the treebank data, we found it
helpful to designate a short unique prefix to each
sentence ID, e.g. usc-039 for sentence 39.

For each sentence, the assigned annotator cre-
ated a new working branch from the main branch
of the project’s GitHub-hosted repository. The an-
notator then manually corrected the automated tok-
enization and added lemma and part-of-speech tags
according to CGELBank conventions (Reynolds
et al., 2024). Tree editing was facilitated by Active-
DOP (van Cranenburgh, 2018), a browser-based
graphical treebanking tool which utilizes an active
learning parser (disco-dop, van Cranenburgh et al.
2016). To enable editing of .cgel-format trees, we
extended a CGELBank-customized version of Ac-
tiveDOP reported by Reynolds et al. (2023). Once
the annotator was finished using the tool, they ex-
ported the .cgel-format tree from ActiveDOP and
appended it to the corresponding stub file. The an-

3

https://uscode.house.gov/

notator then saved and committed their file changes
to their working branch.

Some annotators opted to interface with Git from
the command line (and subsequently ‘push’ their
commits to the project’s GitHub repository), while
others utilized GitHub’s built-in text editor user
interface to edit and commit changes directly from
their web browser. Once the annotator’s changes
had been committed to their working branch on
GitHub, a visualization action automatically gener-
ated a LATEX rendering of the .cgel-format tree as
a .pdf file and committed that file to the working
branch. A second validation action verified that the
tree did not have any obvious errors.

The annotator then opened a pull request on the
main branch. Another team member, assuming the
manager role, reviewed the pull request by inspect-
ing the changed files. The LATEX rendering pro-
vided the reviewer with a convenient, easy-to-read
graphical representation of the user’s annotation.
The reviewer and annotator could discuss the an-
notation through comments left on the pull request.
In the event that the reviewer requested changes,
the annotator could modify the relevant .cgel file,
which automatically re-triggered the visualization
action to update the LATEX .pdf of the tree. This
procedure is partly illustrated in Figure 3.

Once the reviewer approved the annotation and
merged it to the main branch, an automatically-
triggered action generated summary statistics of
the treebank, including counts of lexical nodes and
category/function labels, average tree depth, and a
list of high-frequency lemmas.

5 Discussion

Our project repository5 is not simply a static col-
lection of gold annotations; the repository’s com-
mit history and pull request comments also form
a dynamic public record of the decision-making
processes that led to that gold data. This feature
of our development workflow enhances project
transparency, providing future dataset users with
a means of determining how we adjudicated hard
cases of linguistic analysis.

As a new treebanking formalism with a rela-
tively small research community, CGELBank lacks
the breadth of specialized annotation tools enjoyed
by more established projects, e.g., Universal De-
pendencies (de Marneffe et al., 2021).6 We used

5https://github.com/nert-nlp/legal-cgel/
6https://universaldependencies.org/tools.html

Figure 3: (1): excerpt of a GitHub action-generated
LATEX visualization for an annotator’s CGELBank tree
annotation; (2): excerpt of a reviewer comment on the
pull request containing the annotation; (3): the visual-
ization action is re-triggered after the annotator commits
their edits, yielding a modified LATEX rendition.

GitHub actions – relatively simple scripts which
execute in a GitHub repository – to deliver some
of the functionality of standalone annotation tools
(i.e., automated visualization and validation), in
addition to using and extending a bespoke CGEL-
Bank annotation tool. We used these actions in
a way that allowed the annotator and reviewer to
efficiently discuss and adjudicate a proposed an-
notation. These actions – especially the automated
valiation – also promote consistency by enabling
annotators and reviewers to quickly spot errors.

Lastly, the public nature of GitHub strongly en-
courages community participation. Anyone with
a GitHub account can comment on the project by
posting a GitHub issue (a discussion thread used to
track project-related matters). The broader commu-
nity can also create pull requests to suggest correc-
tions to the dataset (or to add new data).

6 Related work

To a limited extent, previous work has discussed
the utility of version control for developing anno-
tated linguistic resources. Palmer and Xue (2010)
recommend that annotators employ a VCS pro-
tocol to promote data security and integrity as a
resource is developed. San (2016) implements a
Git-based procedure to develop a dataset of pho-
netic transcriptions for three indigenous Australian
languages. On this procedure, annotators’ con-
tributions are tracked through Git commits, and
Git “hooks" (automated scripts) automatically re-

4

https://github.com/nert-nlp/legal-cgel/
https://universaldependencies.org/tools.html

compute corpus statistics upon merge. Our pro-
posed workflow builds on this approach by leverag-
ing the social functionality of GitHub to facilitate
adjudication, foster community participation, and
create a persistent open record of the design and
analysis choices that shape the final corpus product.

Previous work has also explored the value
of VCS technologies for maintaining previously-
developed resources. Rosenberg (2012) and Steiner
(2017) discuss how version control could help
research communities record (and disseminate)
changes and corrections to speech corpus annota-
tions. Dumitru et al. (2024) design and implement
a VCS for managing dynamic speech corpora of
the kind envisioned by Rosenberg.

Previous work has focused largely on applying
VCS protocols in the context of annotated speech
corpora. To our knowledge, we report the first ap-
plication of a VCS-based workflow to syntactic
treebanking. However, as discussed in Section 3,
GitHub already plays a significant role in the on-
going maintenance of the Universal Dependencies
project, including as a forum for discussing errors
and updates to annotation conventions.

7 Limitations

Though our workflow offers several advantages for
linguistic annotation, we have not presented a quan-
titative comparison of annotation speed or accuracy
against alternative workflows. Additionally, while
GitHub actions provide useful automation, devel-
oping and maintaining custom validation and visu-
alization scripts requires a non-trivial number of
technical prerequisites, including familiarity with
the YAML-based workflow syntax associated with
GitHub actions. Finally, annotators unfamiliar with
version control in general (or Git in particular) may
face a learning curve associated with the core con-
cepts of Git repository management.

8 Conclusion

We presented a GitHub-based workflow for linguis-
tic annotation. We provided a proof-of-concept
implementation of this workflow for syntactic tree-
banking, demonstrating that this workflow pro-
motes four values that enhance the usefulness and
quality of annotated linguistic resources. Future
work could extend this approach to other types
of linguistic annotation tasks beyond treebanking,
such as semantic role labeling or discourse analy-
sis. Moreover, the workflow could be adapted to

support multiple independent annotations followed
by adjudication, leveraging Git’s branching model
to manage parallel annotation efforts.

Finally, there are opportunities to integrate
GitHub with external annotation tools through the
GitHub Apps framework,7 which enables third-
party software to directly perform common GitHub
operations such as writing commits, opening/com-
menting on pull requests, and triggering automated
workflows. In ongoing work, we are extending
such functionality to ActiveDOP (van Cranenburgh,
2018), the tree editor employed in our CGELBank
treebanking demonstration, so that annotators can
participate in a GitHub-based workflow without
leaving the annotation environment.

Computational linguistics continues to depend
on high-quality linguistic annotation to support
empirically-informed natural language analysis and
data-driven system development. By embracing
version control practices and technologies, we can
foster more rigorous, collaborative, and sustainable
approaches to this essential practice.

9 Acknowledgments

We thank Micaela Wells, Devika Tiwari, and Meru
Gopalan, who participated as annotators for the
CGELBank project described in the paper. We ad-
ditionally thank Meru Gopalan for his assistance in
developing the visualization action script described
in Section 4. We also thank Brett Reynolds for
providing helpful feedback on many annotations.
Finally, we gratefully acknowledge the insightful
comments of three anonymous LAW reviewers.
This research was supported in part by NSF award
IIS-2144881 (to NS).

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

and Valentin Tablan. 2010. Web-based collabora-
tive corpus annotation: Requirements and a frame-
work implementation. In New Challenges for NLP
Frameworks (NLPFrameworks 2010), pages 20–27,
Valletta, Malta. ELRA Language Resources Associa-
tion.

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Vlad Dumitru, Matthias Boehm, Martin Hagmüller,
and Barbara Schuppler. 2024. Version control for

7https://docs.github.com/en/apps/overview

5

http://lrec.elra.info/proceedings/lrec2010/workshops/W10.pdf#page=25
http://lrec.elra.info/proceedings/lrec2010/workshops/W10.pdf#page=25
http://lrec.elra.info/proceedings/lrec2010/workshops/W10.pdf#page=25
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://aclanthology.org/2024.konvens-main.30/
https://aclanthology.org/2024.konvens-main.30/
https://docs.github.com/en/apps/overview

speech corpora. In Proceedings of the 20th Confer-
ence on Natural Language Processing (KONVENS
2024), pages 303–308, Vienna, Austria. Association
for Computational Linguistics.

Rodney Huddleston and Geoffrey K. Pullum, editors.
2002. The Cambridge Grammar of the English Lan-
guage. Cambridge University Press, Cambridge, UK.

Juri Opitz, Shira Wein, and Nathan Schneider. 2025.
Natural language processing RELIES on linguistics.
Computational Linguistics. To appear.

Martha Palmer and Nianwen Xue. 2010. Linguistic
Annotation, chapter 10. John Wiley & Sons, Ltd.

Brett Reynolds, Aryaman Arora, and Nathan Schneider.
2023. Unified syntactic annotation of English in the
CGEL framework. In Proc. of LAW, pages 220–234,
Toronto, Canada.

Brett Reynolds, Nathan Schneider, and Aryaman Arora.
2024. CGELBank annotation manual v1.1. Preprint,
arXiv:2305.17347.

Andrew Rosenberg. 2012. Rethinking the corpus: mov-
ing towards dynamic linguistic resources. In Proceed-
ings of Interspeech 2012, pages 1392–1395, Portland,
USA. International Speech Communication Associa-
tion.

Nay San. 2016. Using version control to facilitate a
reproducible and collaborative workflow in acous-
tic phonetics. In Proceedings of the Sixteenth Aus-
tralasian International Conference on Speech Sci-
ence and Technology (SST2016), pages 341–344, Par-
ramatta, Australia. Australasian Speech Science and
Technology Association.

Ingmar Steiner. 2017. A devops manifesto for speech
corpus management. In Proceedings of the 28th
Conference on Electronic Speech Signal Process-
ing (ESSV), pages 160–166, Saarbrücken, Germany.
Deutsches Forschungszentrum für Künstliche Intelli-
genz.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsujii.
2012. brat: a web-based tool for NLP-assisted text
annotation. In Proceedings of the Demonstrations
at the 13th Conference of the European Chapter of
the Association for Computational Linguistics, pages
102–107, Avignon, France. Association for Compu-
tational Linguistics.

Andreas van Cranenburgh. 2018. Active DOP: A con-
stituency treebank annotation tool with online learn-
ing. In Proceedings of the 27th International Confer-
ence on Computational Linguistics: System Demon-
strations, pages 38–42, Santa Fe, New Mexico. As-
sociation for Computational Linguistics.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language
Modelling, 4(1):57–111.

6

https://aclanthology.org/2024.konvens-main.30/
https://doi.org/10.1017/9781316423530
https://doi.org/10.1017/9781316423530
https://doi.org/10.1162/coli_a_00560
https://doi.org/10.1002/9781444324044.ch10
https://doi.org/10.1002/9781444324044.ch10
https://aclanthology.org/2023.law-1.22
https://aclanthology.org/2023.law-1.22
https://arxiv.org/abs/2305.17347
https://www.isca-archive.org/interspeech_2012/rosenberg12b_interspeech.html
https://www.isca-archive.org/interspeech_2012/rosenberg12b_interspeech.html
https://core.ac.uk/download/pdf/533457083.pdf#page=356
https://core.ac.uk/download/pdf/533457083.pdf#page=356
https://core.ac.uk/download/pdf/533457083.pdf#page=356
https://www.dfki.de/fileadmin/user_upload/import/9204_Steiner_2.pdf
https://www.dfki.de/fileadmin/user_upload/import/9204_Steiner_2.pdf
https://aclanthology.org/E12-2021/
https://aclanthology.org/E12-2021/
https://aclanthology.org/C18-2009
https://aclanthology.org/C18-2009
https://aclanthology.org/C18-2009
https://doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.15398/jlm.v4i1.100

	Introduction
	Version control and Git/GitHub
	Application to linguistic annotation
	Demonstration: treebanking
	Discussion
	Related work
	Limitations
	Conclusion
	Acknowledgments

